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Phases and phase transitions

States of matter intermediate between liquids and solids have
recently become of intense interest because of their important applications
and their value in studying fundamental problems in statistical physics.

J. David Litster and Robert J. Birgeneau

*Liguid crystals are beautiful and mys-
terious; I am fond of them for both
reasons”—P. G. de Gennes, 1972

In this first sentence of his seminal
book “The Physics of Liquid Crystals,”
Pierre Gilles de Gennes' has succinctly
stated the appeal that liquid crystals
have for all of us working in this field.
The term “liquid crystal,” in fact, re-
fers to a number of distinct states of
matter that have structural order in-
termediate between that of convention-
al liquids and solids.

Although liquid crystals have been
known for at least 90 years, they have
really only attracted major attention
from physicists in the last fifteen years.
This meteroric rise in interest has oc-
curred for several reasons. First, liquid
crystals have precipitated a revolution
in the display industry and this in turn
has piqued the interest of basic scien-
tists. Second, the liquid-crystalline
state is ubiquitous in biologically active
systems, including the human ana-
tomy, and thus forms a major thrust in
biophysical research. Third, and from
our point of view most important, the
physical behavior of liquid crystals
turns out to be remarkably subtle. In-
deed it is only because of the last
decade’s significant progress on the
phase-transition problem that we even
know how to begin thinking about some
of the basic issues in liquid-crystal phy-
sics. As we shall discuss, a number of
these fundamental issues remain un-
solved.

However, during the past fifteen
years great strides have been made in
our understanding of the statistical
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mechanics of second-order and weakly
first-order phase changes. The concept
of spontaneously broken symmetry and
the resulting appearance of new hydro-
dynamic modes has been an important
one. The ideas of V. L. Ginzburg, Lev
D. Landau, and Rudolph Peierls on the
importance of thermal fluctuations for
various symmetries, range of interac-
tions, and spatial dimensions of order-
ing have been useful concepts in under-
standing critical phenomena, and the
renormalization-group techniques in-
troduced by Kenneth Wilson and Mi-
chael Fisher have enabled calculations
of the behavior of strongly fluctuating
condensed phases. All of these ideas,
combined with the experimental tools
that developed concomitantly, have
been applied successfully to study
phases in liquid crystals. The rich
variety of behavior observed is now
being used to extend the conceptual
tools developed through the study of
simpler systems to elucidate in a funda-
mental way the properties of even more
complex materials.

With our interest in understanding
phase transitions, we will emphasize
here this aspect of liquid crystal phy-
sics and the tools for studying it. How-
ever, many physical properties of mat-
ter are altered by liquid-crystalline
order, and a wide variety of experimen-
tal techniques, including ultrasonic
measurements, nuclear-magnetic reso-
nance, electron-paramagnetic reso-
nance, and linear and nonlinear op-
tics, can fruitfully be used to study
them; many physicists can thus use
their favorite tools.

Classification

Liquid crystals are broadly classified
as nematic, cholestric and smectic (see
figure 1). There are at least nine dis-
tinct smectic polytypes bearing the
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rather mundane labels smectic A, B,
C,...I, with the phases being labelled
not according to any microscopic pro-
perties but rather by the chronological
order of their discovery. It is clear,
however, that it will be most useful to
discuss the many liquid-crystal phases
in terms of their underlying symmetry
properties. Indeed, we shall discover
that some of the smectics are actually
three-dimensional solids and not dis-
tinct liquid-crystal phases at all. To
make our discussions quantitative, we
introduce a density function p(r):
p(r)d®r gives the probability of finding
an atom in volume d*r at point r. In
liquids p(r) is a constant, while in crys-
talline solids p(r) is anisotropic and has
a long-range periodicity. Landau
pointed out in the late 1930s that the
density could still be anisotropic in
materials that lacked conventional
three-dimensional long-range periodic-
ity; these are liquid crystals.

We discuss first the anisotropy that
arises purely from orientational ef-
fects. The most obvious way to achieve
an anisotropic density is for the liquid
to consist of anisotropic molecules that
have long-range molecular orienta-
tional order; here the anisotropy of p(r)
represents an orientational ordering of
the molecules in the absence of posi-
tional ordering, An example is the
uniaxial orientational ordering of rod-
like molecules that occurs in thermo-
tropic nematic liquid crystals, the
phase used in calculator and wrist-
watch displays. There is a second and
much less obvious way for p(r) to be
anisotropic even when a material lacks
spatial long-range order. It is common-
ly called “bond orientational’ long-
range order to distinguish it from *mo-
lecular orientational’” long-range
order. This concept was also discu
by Landau in the context of two dimen-
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sional adsorbed systems. It has only
recently been applied to liquid crystals.
A state with bond-orientational long-
range order may be viewed as one in
which the translational ordering of the
crystal lattice has been lost but the
underlying orientational anisotropy of
the intermolecular forces remains.
Figure 2 illustrates this idea. We em-
phasize that there is no actual chemical
bond between neighboring molecules
but only a registering of the local axes
throughout the sample.

We believe that the concepts of posi-
tional, bond-orientational, and molecu-
lar-orientational order can serve as a
basis to classify the rich variety of
liquid crystal phases that exist in na-
ture. In this article we shall discuss a
number of these phases, their interest-

Buloxybenzylidene-octylanilene

Common types of liquid-crystal ordering—
nematic, smectic-A, smectic-B, smectic-C
and cholesteric. Chemical structure of three
liquid-crystal molecules is shown:
Butoxybenzylidene-octylanilene has nematic,
smectic-A, and lamellar crystalline smectic-B
phases; octyloxy-cyanobiphenyl has a
nematic phase and a smectic-A phase (in the
smectic-A phase the period of the density
wave is about 1.4 times the molecular length,
which indicates molecules are paired
similarly to the two shown here);

cholesterol nonanoate is typical

of the chiral molecules that have a
cholesteric phase. Figure 1

ing properties, and how a study of them
elucidates problems in statistical phy-
sics which are both currently topical
and quite fundamental.

Thermotropic liquid-crystal phases
are those observed in pure compounds
or homogeneous mixtures as the tem-
perature is changed; they are conven-
tionally classified into nematic choles-
tric, and smectic phases (figure 1). As
Peter Pershan discusses, in the article
on page 34, lyotropic liquid-crystal
phases are observed when amphiphilic
molecules, such as soaps, are dissolved
in a suitable solvent, usually water. As
Edward Samulski explains in another
article (page 40), solutions of polymers
also exhibit liquid-crystalline order—
the polymeric phases. Our knowledge
is most complete for the thermotropic
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phases and much of this understanding
can be transferred to elucidate poly-
meric and lyotropic phases, but it is not
yet clear that it will be sufficient for a
complete description of them.
Nematic phase. The simplest phase,
which contains only molecular-orienta-
tional ordering, is the nematic. The
work “nematic” derives from the Greek
vnua, which means thread; it refers to
certain thread-like defects commonly
observed in these materials. The mole-
cules butoxybenzylidene-octylanilene
and octyloxy-cyanobiphenyl in figure 1
both exhibit nematic phases. All
known thermotropic nematics have
one symmetry axis, called the director
n, and are optically uniaxial with a
strong birefringence. The molecules
themselves usually lack a center of
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Bond-orientational order in a triangular two-
dimensional lattice. At top, molecular posi-
tions are correlated only over a short distance
p, while the orientation of the lattice vectors a
and b is preserved throughout the sample. At
bottom, the orientational order of the crystal
axes |s also only short range. Figure 2

symmetry but the nematic phase has
inversion symmetry and the orienta-
tional order parameter has quadrupo-
lar rather than dipolar symmetry;
there are no ferroelectric nematics.
The continuous rotational symmetry of
the isotropic liquid phase is broken
when the molecules choose a particular
direction to orient along in the nematic
phase; this is accompanied by the ap-
pearance of two new normal modes. In
modern language, these are the Gold-
stone bosons that restore the isotropic
symmetry broken by the establishment
of the nematic order. (They are thus
analogous to spin waves in ferromag-
nets.) They cost little energy to excite
at long wavelengths, and, because they
correspond to a local reorientation of
the optic axis, they scatter light in-
tensely; the mean distance a photon
can travel in a nematic before being
scattered by a director fluctuation is
about one millimeter, so nematics ap-
pear turbid.

The nematic-isotropic phase transi-
tion is analogous to the Curie point in a
ferromagnet and shows many of the
well-known anomalies associated with
a critical point. There is, however, an
essential difference: In a nematic, posi-
tive and negative values of the order
parameter correspond to positive and
negative birefringence and hence to
quite different physical arrangements
of the molecules. The sign of the order
parameter is important, in contrast to
the dipolar symmetry of ferromagnets.
In a Landau expansion of the free
energy for a nematic, then, there will
he a cubic invariant. This, in turn,
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means that the transition must be at
least weakly first order. In fact, typical
latent heats are slightly less than AT
per molecule. In general, however, the
phase transition behavior of nematics
can be readily understood using con-
ventional ideas about critical phenom-
ena, and there do not seem to be any
major unsolved problems.

Cholesteric phase. A different ther-
motropic phase having only molecular
orientational order is formed by chiral
molecules. This is the cholesteric
phase, thermodynamically equivalent
to a nematic but with a chiral character
that causes the director to twist (see
figure 1) with a pitch that is compara-
ble to the wavelength of light. The
name “cholesteric” derives from the
fact that many cholesterol esters exhi-
bit this phase. The strong modulation
of the refractive index due to the twist
causes Bragg scattering of various col-
ors of light and makes cholesterics the
most beautiful of the liquid-crystal
phases. The “blue” phase of cholester-
ics has only recently come to be under-
stood as a stable lattice of defects in the
uniform cholesteric structure and is
currently very interesting. Because
William F. Brinkman and Patricia Cla-
dis treat thin films extensively on page
48, we shall not discuss it any further
here.

Smectic phases. The remaining ther-
motropic phases are all smectics. The
smectics are distinguished by having
an intermediate degree of positional
order in addition to molecular orienta-
tional and, in some cases, bond-orienta-
tional order. The term “smectic” der-
ives from the Greek ounyua, meaning
soap, since the smectic phases tend to
have mechanical properties akin to
those of soaps. The molecules butoxy-
benzylidene-octylanilene and octyloxy-
cyanobiphenyl shown in Figure 1 also
exhibit smectic phases; the former has
two (smectic A and smectic B), while
the latter has one (smectic A). Smectics
have usually been identified by the
textures they exhibit under a polariz-
ing microscope and by miscibility stu-
dies with known phases. On this basis,
at least nine different smectic phases
have been identified so far, although
not all are truly liquid crystals.

The simplest smectic phase is the
smectic-A phase illustrated in figure 3.
This phase has traditionally been de-
scribed as a system that is a solid in the
direction along the director and a fluid
normal to the director, or equivalently,
as stacked two-dimensional fluids; it is
more properly described as a one-di-
mensional density wave in a three-
dimensional fluid with the density
wave along the nematic director. In
typical pictures such as those shown in
figure 3 one depicts rather well-defined
layers. In fact, in real smectic A mate-
rials, x-ray scattering shows that the

higher spatial harmonics of the density
wave are surprisingly weak. Thus the
dashed lines through the molecules in
figure 3 should be interpreted not as
lattice planes, but rather as planes of a
certain phase of the nearly sinusoidal
density wave shown to the right in the
figure. The smectic-C phase is similar
except the density-wave vector makes a
finite angle with the director. In both
smectic-A and smectic-C phases there is
complete translational symmetry nor-
mal to the density-wave vector.

Smectic-A theory

The smectic-A phase has proven to be
unusually subtle; indeed we still do not
have a proper theoretical description
for it or for its phase transition. The
most successful phenomenological
model is one that is analogous to a
Landau-Ginzburg description of a
charged superfluid. The order para-
meter is a complex quantity whose
magnitude and phase are the corre-
sponding amplitude and phase of the
smectic density wave.

Following reference 2, we can write
the density as

plr)=py|1 + [We'*]| (1)
where 27/q, is the layer spacing and
Y(r) = |¥|e*“". Here ulx,y, z) is the
displacement of the layers in the 2
direction away from this equilibrium
position. In terms of ¥, the free-energy
density may be written

¢ =do+a|¥]* + Y2 B|¥|*
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where the nematic free energy ¢y is
given by
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where i is the nematic director. Solid-
state physicists will immediately recog-
nize equation 2 as being analogous to
the Landau free energy for a supercon-
ductor, with an anisotropic mass and
with A playing a role analogous to the

Density

z

Smectic-A phase consists of a one-dimen-
sional density wave along the average direc-
tion of the molecular axis. The sinusodial
shape of the density wave is reflected in the
diffraction pattern by the absence of higher-
order reflections. Figure 3



magnetic vector potential A. There
are, however, some essential differ-
ences and it is these differences that
have made the smectic-A problem so
difficult to solve.

The Goldstone mode of the smectic-A
phase, which derives from phase fluctu-
ations in the order parameter, corre-
sponds to fluctuations in the positions
of the smectic layers. The elastic con-
stant for compression of the layers is
thus analogous to the superfluid den-
sity. Nematic-director modes that in-
volve 7 < change the layer spacing
and require a much higher energy than
in the nematic phase; thus 7 x#a is
suppressed in the smectic-A phase.
This is the exact analog of the Meissner
effect in a superconductor; one can
derive it straightforwardly from equa-
tion 2.

The smectic-A phase has highly ani-
sotropic elastic properties that lead to
unusual behavior in three dimensions.
Indeed, the current edition of Landau
and Lifshitz’s Statistical Physics®
points out, smectic-A and smectic-C
liquid crystals technically do not even
exist in three dimensions. To see why,
consider the Goldstone mode of the
smectic-A phase, shown in figure 4; it
involves a displacement u of the smec-
tic layers in the z direction or, more
properly, gradients of the phase of the
density wave. With the wave vector
along n (or g =gq;) as shown in the
upper half of figure 4, the displacement
is longitudinal and the elastic free en-
ergy is of the usual form “2Bg, *u*(q).
However, with g normal to A, the
displacement is transverse and an addi-
tional elastic restoring force arises be-
cause the director field i remains nor-
mal to the layers; the displacement
thus results in a splay distortion (37-n)
of the director field producing an elas-
tic free energy

2 Kq, *n*q)= Y% K,q, ‘u*g)

where K, is the nematic-phase splay
elastic constant (corresponding to a
curvature of the smectic layers). The
resulting elastic free energy for the
displacement is

Rq) = Y% (Bg,*+ K\q,*)

square displacement ¢u“(r) at a point
in space by applying the equipartition
theorem and summing the contribu-
tions over all g from 27/L (where L is
the sample size) to g, (the smectic
density wavevector). This gives

Cu(r)) = (4m)~ (BK,)~"*kT In(g,L/27).

Because the fluctuations in layer po-
sitions diverge logarithmically with the
sample size, the smectic-A phase lacks
true long-range order. This is quite
reminiscent of a similar logarithmic
divergence that is predicted to occur in
two-dimensional crystalline solids.”
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Anisotropic nature of the Goldstone mode of
the smectic-A phase. When the wave-vector is
along the director, smectic “layers" are com-
pressed and the energy density is proportional
to g7 as for a normal sound wavevector.
When the wavevector is transverse to the
molecular orientation, hence in the plane of
the layers, the restoring force comes from
bending the layers and the energy density is
proportional to q; . The dashed lines indicate
the equilibrium positions of the layers. Figure 4

The logarithmic divergence is slow and
the differences from a system with true
long-range order are subtle, although
they have both theoretical and experi-
mental importance. To discuss these
ideas more quantitatively, it helps to
define a correlation function

G(r) = (exp ig,| u(0) — ulrif >
Its Fourier transform gives the x-ray
scattering intensity from the density
wave. A similar function, but with g,
replaced by a reciprocal lattice vector,
would be used to calculate the x-ray
scattering from a crystalline solid. Ina
system with long-range order, G(r) has
a constant value equal to the Debye—
Waller factor e ““ as r becomes infi-
nite. If there is only short-range order,
as in a liquid, G(r) vanishes as e "*
where £ is the correlation length for the
short-range order. For smectic A and C
phases in three dimensions as well as
solids in two dimensions, a simple cal-
culation® shows that G{r) vanishes alge-
braically as r, — », with y a small num-
ber, of order Yio. The predicted x-ray
scattering for long-range order consists
of very sharp Bragg peaks located at
reciprocal lattice points; when G(r) de-
cays algebraically, the Bragg peaks are
replaced by power-law singularities of
the form (g, —g,) ** "
Technically, there is no elastic scatter-
ing and the power-law singularities
derive purely from inelastic processes.

Experimentally, it is not trivial to
distinguish between the delta-function
form characteristic of Bragg scattering
and the power-law singularity antici-
pated for these Landau-Peierls sys-
tems; very high angular resolution
with steeply dropping tails of the reso-
lution function is necessary. Such an
experiment has, however, been per-
formed by Jens Als-Nielsen and his
coworkers.” They obtained the appro-
priate resolution function by using a

monochromatic source of x-rays and
perfect-crystal collimators cut to en-
able each collimator to exhibit three
Bragg reflections. In figure 5 we show
x-ray scattering from the smectic den-
sity wave in the smectic-A phase of
octyloxy-cyanobiphenyl. The graph
shows the experimental resolution
function, which is what would be ob-
served if true long-range order existed,
together with the experimental curves
for two different temperatures. We
note that the exponent 7 is a function of
temperature and has a predicted de-
pendence on K, and B.

By fitting the value of 7 to the data
(all other parameters could be indepen-
dently measured), Als-Nielsen's group
was able to deduce the nematic splay
constant K, and obtain results in excel-
lent agreement with direct measure-
ments. This experiment provided proof
that the smectic-A phase in three di-
mensions lacks true long-range order;
it is an example of a system at its lower
marginal dimension where thermal
fluctuations are just strong enough to
prevent the establishment of true long-
range order. The experiment also pro-
vided the first experimental evidence of
an algebraic decay of a correlation
function, a concept of broad importance
in the statistical mechanics of phase
transitions.

Nematic-smectic transitions

The transition from a smectic-A to a
nematic phase is also interesting to
study, not only from the viewpoint of
critical phenomena, but also because it
would appear to be the simplest form of
melting to occur in three dimensions.
A variety of pretransitional effects in
the nematic phase near the second-
order transition into the smectic-A
phase result from the thermally excit-
ed fluctuations in short-range smectic
order: A smectic-A density wave ap-
pears, but correlated over relatively
short distances, and then decays away.
It is interesting to note that photon
scattering in the optical and x-ray re-
gions probes separately the two impor-
tant correlation functions in these sys-
tems. Specifically the sample-photon
interaction derives from the term
P-A+ AP+ A% In the optical re-
gion the P-A term dominates, and this
couples directly to the director fluctu-
ations; in the x-ray region |A|?> domi-
nates, and one observes, through
Thompson scattering, the smectic
mass-density fluctuations. Thus one
can measure the correlation lengths of
the density waves and the smectic sus-
ceptibility o(g) directly from the x-ray
profiles and intensities. The smectic-A
short-range order also causes an in-
crease in the nematic bend and twist
elastic constants. This is the direct
analog of the diamagnetism due to
fluctuations that one observes above a
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superconducting transition: Indeed
the result may be derived® from the
theory of fluctuation diamagnetism in
superconductors essentially by a
change in variables in equation 2.

These divergences in K, and K, can
be studied either by light scattering
from the nematic director modes or by
the threshold for distortion induced by
a magnetic field, called a Fredericksz
transition.' One can use light scatter-
ing to study both the dynamical behay-
ior of the fluctuations and the director
modes A(q) with g&>1; a model for
nonhydrodynamic behavior of the
phase transition then provides an abso-
lute determination of £. In figure 6 we
show £, , the correlation length along A,
measured directly by x-ray scattering
and indirectly by light scattering® for
the nematic-smectic-A transition in
butoxylbenzylidene-octylanilene; we
also show £, and ¢ determined from x-
ray scattering. It is evident that the
agreement is very good, especially at
small reduced temperatures. This
agreement, of course, also indicates
that the coupling of director modes to
smectic short-range order as contained
in the model of equation 1 is satisfac-
tory. However, there are several ways
in which the superconductivity analog
fails to describe the nematic-smectic-A
transition correctly. The most obvious
is that the two correlation lengths—
along A and perpendicular to fA—ap-
pear to diverge at different rates, with
&, /&, diverging as the phase transition
is approached, a result that seems to
violate conventional wisdom in the
field of critical phenomena.

Further valuable information on the
nematic-smectic-A phase change has
come’ from the high-resolution specif-
ic-heat measurements pioneered by Da-
vid Johnson and his collaborators at
Kent State University; Carl Garland at
MIT has also made important contribu-
tions.” The specific heat measures the
entropy change associated with ther-
mal fluctuations integrated over the
Brillouin zone, and is closely related to
the smectic short-range order studied
by x-ray and light scattering. If we let
t=|T/Tys — 1|, where Ty, is the ne-
matic-smectic-A transition tempera-
ture, then the correlation lengths di-
verge as £ =¢& ¢ "and § =£0¢t "
while the specific heat varies as At~ °.
We emphasize that in other phase tran-
sitions a single dominant length deter-
mines the anomalous thermodynamic
behavior and the exponents v and v,
are equal. Typical experimental re-
sults for the nematic-smectic-A transi-
tion show v, — v, isabout 0.13 with v,
ranging from 0.66 to 0.83 depending on
the material studied. This remains a
puzzling problem, because we believe
that the behavior of a material near a
second-order phase transition should
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Intensity profile for x-ray scattering from the
smectic-A density waves in octyloxy-cyanobi-
phenyl at two different reduced temperatures.
The dashed curve is the measured spectrom-
eter resolution function, as would be seen for
true Bragg scattering. The solid curves are a
convolution of the resolution function with the
theoretical prediction from algebraic decay of
the correlation function. Figure 5

depend only on the symmetry of the
phases and the spatial dimensionality;
if so, a universal set of exponents
should describe the divergences at all
nematic-smectic-A transitions. A con-
cept known as two-scale-factor univer-
sality, which says in essence that the
divergent part of the free energy per
correlated volume should be constant
near a phase transition, yields the rela-
tionship between exponents
v, + 2v, = 2 — a; this relation appears
to be borne out by the experiments, to
within their uncertainties; the relative
amplitudes of the heat-capacity peaks
in different materials are also consis-
tent with this hypothesis. David Nel-
son and John Toner® at Harvard Uni-
versity recently proposed a model in
which the smectic-A phase changes to
nematic through a proliferation of de-
fects in the layer structure (analogous
to the Kosterlitz-Thouless model® for
melting in two-dimensional crystals)
predicts that asymptotically & =¢&*
and thus v, =2v . The experiments
however all yield v, £1.3v, down to
reduced temperatures of 107 ° It is
possible that experiments have not yet
approached sufficiently close to the
transition temperature to test the pre-
dictions of the defect theories. How-
ever the size of the ordered regions, as
measured by &, has been observed to
grow from 5 A to over 5 microns when
reduced temperature drops from 10!
to 107" and we feel that a satisfactory

theory should be able to describe this
behavior quantitatively. Tom Lu-
bensky and his coworkers have
produced a theory based on a gauge
transformation to the pure supercon-
ductivity problem; this approach ap-
pears quite promising, although it has
not yet been compared qualitatively to
the data. The smectic-A to nematic
transition remains therefore one of the
main unsolved problems in critical phe-
nomena. As has been broadly recog-
nized, the difficulties almost certainly
originate in the Landau-Peierls nature
of the smectic state. It appears that
this feature has not yet been incorpo-
rated satisfactorily into the theoretical
models.

The smectic-C phase (see figure 1)
also provides behavior illustrating in-
teresting new concepts in statistical
mechanics. In the C phase, director
modes that do not alter the angle
between the director and the layers
cost little energy; consequently they
scatter light strongly and a smectic-C
material appears as turbid as a nematic
phase. It is possible to describe the C
phase with a complex order parameter
whose magnitude gives the tilt angle
between the director and the density
wavevector and whose phase corre-
sponds to azimuthal rotation of the
molecules about the normal to the lay-
ers. The symmetry of this order pa-
rameter would permit a second-order
phase change from smectic-C to nema-
tic. However, the phase change is al-
ways observed to be first order. The
mechanism for this ubiquitous first-
order character turns out to be quite
interesting. S. A. Brazovskii has
shown'® that if a density wave is estab-
lished with an infinite number of possi-
ble characteristic wavevectors in a ma-
terial, it will always exhibit first-order
transitions due to fluctuation effects.
Jack Swift has pointed out'' that the
azimuthal symmetry of the smectic-C
phase provides a ring of points in g-
space so that the the nematic-smectic-
C transition is in the Brazovskii class.
Thus the transition is always first-
order even though mean-field treat-
ments, which omit such fluctuation
effects, predict second-order behavior.

In many materials there are smectic-
A-smectic-C phase changes (the A
phase is higher in temperature); this
transition should be analogous to the
superfluid transition in He*. Unlike
He,* however, the observed behavior
near the A-C transition in most materl-
als agrees quantitatively with the pre-
dictions of a Landau or mean-field
approximation to the statistical me-
chanics. We have just recently come to
understand that this is so for reasons
first proposed by Ginzburg to explain
why the mean-field approximation suc-
cessfully describes superconductors.”
If the space dimensionality is less than



four, order-parameter fluctuations in
both superfluids and superconductors
eventually become so large near the
phase transition that the mean-field
treatment, which assumes that fluctu-
ations are negligible, fails. However, if
the bare characteristic length is large,
as in a superconductor, the material
may not enter the critical regime until
the temperature is very close to T_. It
turns out that in most smectic A-C
transitions the bare length is indeed
large—chiefly because the molecules are
locked parallel to each other by the
nematic coupling and one can only tilt
large numbers of molecules at a time.
Specialists in magnetism will recognize
this as the exact analogy of the mecha-
nism causing mean-field behavior in
spin reorientation transitions.

By forming solutions of slightly dif-
ferent organic molecules, the interac-
tions tending to produce nematic, smec-
tic-A, or smectic-C order can be
modified. In this way complex and
interesting phase diagrams result. An
example, discovered by David Johnson
and his colleagues, which can be real-
ized in several different mixtures is a
nematic-smectic-A-smectic-C multicri-
tical point. Multicritical behavior and
the interaction between different order
parameters is a currently important
phase-transition problem. Liquid crys-
tal mixtures afford the opportunity to
study order parameters of several sym-
metries interacting in truly homogen-
eous systems. A second novel class of
multicritical phenomena discovered by
Pat Cladis and co-workers is re-entrant
nematic behavior.'” When octyloxy-
cyanobiphenyl (figure 1) is mixed with
its hexyloxy homolog it can exhibit the
sequence of phases nematic-smectic-A-
nematic either as a function of pressure
at fixed temperature or as a function of
temperature at fixed pressure (see the
phase diagram of figure 7.) It turns out
that the phase-transition behavior
throughout the phase diagram can be
quantitatively predicted using stan-
dard multicritical theory from current
theories of critical phenomena. Thus
we have an elaborate phenomenologi-
cal model for this multicritical behav-
ior using modern concepts, but we still
do not have a convincing microscopic
model accounting for the mechanism of
the re-entrant behavior. This conun-
drum is characteristic of much of lig-
uid-crystal science.

Exotic smectics

The remaining smectic phases all
possess more order than the A and C
phases, which, as we mentioned before,
lack true long-range order in three
dimensions. The *“exotic” smectics
turn out to provide vivid examples in
three dimensions of some of the most
exciting recent advances in statistical
mechanics has been a theoretical mod-
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el” for melting in two dimensions by
Michael Kosterlitz and David Thouless,
in which the unbinding of pairs of
dislocations leads to melting. Recent
experiments suggest that this theory
correctly describes two dimensional
melting when the melting is second
order. However, the three-dimensional
problem with its more complex topol-
ogy remains unsolved. The Kosterlitz—
Thouless two-dimensional model does
not include the orientational aniso-
tropy of the triangular lattice, a situa-
tion which was rectified'* by Bertrand
Halperin in working with David Nel-
son. Their calculations showed that
two-dimensional melting could proceed
by two stages. The lowest-temperature
crystal phase, because of the Landau-
Peierls instability we discussed for
three dimensional smectic-A phases,
has only quasi-long-range positional or-
der and the correlation function G{(r)
decays algebraically with r. The two-
dimensional crystal does, however,
have long-range bond-orientational or-
der (figure 2), a point first realized by
Landau® and later developed by David
Mermin.'® This can be discussed quan-
titatively by defining a correlation
function (r) = ¢e''*" "' for a crys-
tal with six-fold symmetry; #r) mea-
sures the orientation of one of the
crystalline axes at point r. In the two-
dimensional crystal, O(r) remains finite
as r—w=. Then at a higher tempera-

Figure 6

ture, by means of the Kosterlitz-Thou-
less mechanism, a transition occurs to a
phase in which G(r) decays exponen-
tially with distance; that is, the system
has short-range positional order where-
as (Ar) decays algebraically with dis-
tance. This phase was christened “hex-
atic” by Halperin and Nelson. At a still
higher temperature there is a second
transition that proceeds by unpairing
of disclinations in the bond-orienta-
tional order to a two-dimensional liquid
in which both G{r) and O(r) decay ex-
ponentially. The hexatic phase, while
an exciting idea, has yet to be observed
in two dimensions. Studies of very
thin, freely suspended films of liquid
crystals may offer the best hope to test
these ideas experimentally; this is the
subject of a following article by Ronald
Pindak and David Moncton (page 56).

We should like to discuss the implica-
tions of these ideas for three-dimen-
sional liquid-crystal phases'®. Part of
what we say was implicit in a sugges-
tion'” of de Gennes and G. Sarma, but
precise predictions have only become
possible since Halperin and Nelson pro-
posed their ideas. The important phys-
ical idea in extending these concepts
from two to three dimensions is that
the algebraic decay of a correlation
function means that the associated sus-
ceptibility must be infinite; this is a
consequence of the fluctuation-dissipa-
tion theorem in statistical mechanics.
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Thus when two-dimensional crystal
phases are stacked, any reasonable in-
teractions between the layers will con-
vert the quasi-long-range positional or-
der into true long-range order and
result in a three-dimensional crystal.

If hexatic phases are stacked, the
interactions between layers produce
long-range bond-orientational order
combined with short-range positional
order, provided that the interactions
between the layers are below a critical
value; this phase of stacked hexatics

R=CHy 10 CoHye

Discotic smectic phase discovered by S. Chandrasekhar and co-
workers; the disk-shaped molecules are irregularly spaced to form

Figure 7

seems to be the basis for a number of
well-ordered smectic liquid-crystal
phases. Finally, if two-dimensional [i-
quids are stacked together one obtains
the smectic-A or smectic-C phases of
three-dimensional liquid crystals.
These ideas have been tested in recent
experiments. Pindak and Moncton
present strong evidence for the exis-
tence of a hexatic smectic-B phase with
the molecules oriented perpendicular
to the smectic layers and short-range
positional order combined with long-

range bond-orientational order in the
plane of the layers. There is also strong
evidence that the smectic-l and possi-
bly the smectic-F phases are hexatic
smectics with the molecules tilted
towards the vertices and sides, respec-
tively, of the triangular in-plane lat-
tice. Thus, although the existence of
hexatic phases remains unconfirmed
and somewhat controversial in two di-
mensions, their three-dimensional ana-
log appears to exist. It has, of course,
not been proven that these three-di-
mensional hexatics relate directly to
the two-dimensional model of Halperin
and Nelson. At the minimum we may
know that three-dimensional bond-
orientational order is an essential or-
der parameter in describing liquid-
crystal phases.

High resolution x-ray studies show
that phases that have been classified as
smectic-B in many materials are not, in
fact, liquid crystals at all but rather
lamellar crystals with true long-range
positional order in three dimensions. It
seems likely that other phases such as
smectics E, G and H, which are not yet
well-characterized, are also three-di-
mensional solids. They differ from
crystal-B phases in the tilt degree of
freedom and in possible distortions
from a hexagonal crystal. Study of
these phases might more properly be
called solid-state rather than liquid-
crystal physics; nevertheless they are
interesting lamellar phases of matter
with a rich behavior and are thus
deserving of much more detailed inves-
tigation.

The phases we have discussed result
from the ordering of rod-like molecules.
S. Chandrasekhar and his colleagues'®
have recently discovered nematic-like

liquid-like columns, thus giving a two-dimensional smectic density
wave, Insert shows a typical molecule.

Figure 8



ordering of the symmetry axes of disk-
shaped molecules. Some of these mate-
rials (we show a typical example in
figure 8) also have smectic phases
which are in a sense dual to the smec-
tic-A phase formed by rod-like mole-
cules; instead of “layers” the smectic
consists of “columns” formed by stack-
ing of the disk molecules. There is only
short-range positional order along the
columns so this type of smectic corre-
sponds to a two-dimensional density
wave in a three-dimensional liquid.
This phase has no Landau-Peierls in-
stability in three dimensions and
should have long-range order. These
“discotic” liquid phases have not yet
been as thoroughly studied as other
thermotropic phases.
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