Differential geometry,
fiber bundles
and physical theories

Working on purely abstract problems in geometry, mathematicians
have independently found a suitable framework for the gauge theories
that appear to describe elementary particles.

Isadore M. Singer

Among intellectual disciplines, math-
ematics occupies a unique position. It
is in many respects an art, but it is also
the language of science. Although a
great deal of mathematics can be
traced directly to external influences,
much of its creativity is motivated in-
ternally: “pour la gloire de l'esprit
humain,” as Carl G. T. Jacobi put it.
Often the mathematician lets the
imagination soar, constrained only by
logic, intrinsic structure, and a sense of
historical continuity. Yet from time to
time these abstract deliberations have
important applications in other fields.

The general theory of relativity is one
well-known example. In the first half of
the nineteenth century, Karl Friedrich
Gauss and his pupil Bernhard Riemann
laid the foundations of a general theory
of curved spaces of arbitrary dimen-
sions. These ideas were taken up by
several Italian mathematicians, includ-
ing Curbastro Gregorio Ricci and his
pupil Tullio Levi-Civita; the tensor
calculus they developed became the
principal analytical tool of Riemannian
geometry. These researches had no
apparent connection with physical rea-
lity until some time after 1907, when
Albert Einstein with his friend Marcel
Grossmann recognized in them the ap-
propriate framework for a relativistic
theory of gravitation.

In the past few years, mathemati-
cians and physicists may be witnessing
a similarly miraculous confluence of
ideas. On the one end are the physical-
ly motivated gauge theories, developed
to deal in a unified way with electro-
magnetic, weak and strong interac-
tions; on the other end is an internally
motivated extension of Riemannian ge-
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Topological structures with different integral curvatures. The integral curve k of a surface,
which can be derived from purely local measurements, is a topological invariant, remaining
constant no matter how the structure is locally distorted. For the sphere the value of k is 4r; for
the torus it is zero; for the two-holed torus itis — 4. (Drawings for this article by Louis Fulgoni.)

ometry, involving the notion of fiber
bundles. It came as a revelation in the
mid-1970s to many mathematicians
and physicists alike that gauge theories
used connections (vector potentials) on
fiber bundles. One of the principal
architects of gauge theories, Chen-Ning
Yang, wrote, “1 found it amazing that
gauge fields are exactly connections on
fiber bundles, which the mathemati-
cians developed without reference to the
physical world."

Geometry and fiber bundles

To understand the concept of a fiber
bundle and its role in modern global
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geometry it will be helpful first to
review classical differential geometry.

Gauss made the pivotal discovery of a
curvature at each point of a surface
that can be calculated from suitable
measurements—angles and lengths in
triangles—in a small region. The no-
tion of Gaussian curvature, in other
words, is a purely “local” concept. For
example, one can show the Earth is
round without circumnavigating the
globe and without photographs from
outer space—as Eratosthenes did by
comparing shadows in Alexandria and
Syene. Circumnavigation or views
from outer space bring out the overall
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or “global” structure of a surface,
which is the concern of topology. Thus,
for example, if a sphere is locally dis-
torted by bumps and dips it remains
globally a sphere. Topologically a
sphere, a plane and a torus remain
distinct, even when each is somewhat
distorted.

The connection between topology
and differential geometry is given by
“global geometry,” which tries to ob-
tain information about the topology—
the overall shape—of a space from local
measurements made throughout the
space. For example, we try to deter-
mine the shape of our universe from
accessible measurements, without step-
ping out of the universe. The most
stunning example in the theory of sur-
faces is the celebrated Gauss-Bonnet
theorem, which says that the integral
of the Gaussian curvature over an en-
tire surface is a topological invariant,
and is in fact an integer multiple of 27.
For a sphere, no matter how distorted,
the integral curvature is 4r; for a torus
it is zero; while for the “‘double-holed
torus’ shown on the previous page it is
— 47.

Auxiliary spaces are useful in study-
ing ordinary surfaces and their higher-
dimensional analogs. One example is
the space consisting of the tangent
planes to a surface; others, shown in
the illustration below, are the circles of
unit radius in the tangent planes (on
the left), and the lines normal to the
surface (in the figure on the right).

Such spaces are called *‘fiber bun-
dles.”” The “fibers" are the auxiliary
spaces—the tangent planes, unit cir-
cles, normal lines or whatever—and
the “bundle” is the totality of fibers as
they fit together. The fibers can be
complicated higher-dimensional sur-
faces, and the bundles can be just as
complicated. For example, the dimen-
sion of the normal fibers to a surface

depends on the dimension of the sur-
rounding space: for a surface in a four-
dimensional space the normals are
planes and the fibers are thus two-
dimensional.

Until the 1930s differential geometry
was mainly concerned with tangent
bundles and their associated tensor
bundles. At that time, Hassler Whit-
ney studied how surfaces sit in higher-
dimensional spaces and was led to con-
sider normal bundles and then more
general bundles completely unrelated
to the tangent bundle.

Fiber bundles have become so com-
mon in high-energy physics (grand uni-
fication schemes, symmetry breaking,
dimensional reduction) that a short
digression into their geometry is in
order.

On the circle (a one-dimensional
sphere, S') we can construct two fiber
bundles whose fibers are circles; one of
these is trivial; the other one is not.
The first is a torus, which we can
construct by taking a circle and bring-
ing it around the base circle. As we
close the torus we are effectively giving
a way to connect the last circle to the
first one: identify each point at an
angle # with the corresponding point on
the other circle. The second fiber bun-
dle is a Klein bottle, which we again
construct by carrying a circle around
the base circle, but now when the fiber
circle is brought back to the starting
point we make the identification
G+« — finstead of 6«+6. (Essentially we
are flipping the circle around before
completing the space, in the same way
that we flip a tape around before past-
ing its ends together to make a Mobius
strip.)

A slightly different way of looking at
this construction generalizes to higher
dimensions. Take the base S' and

break it into two pieces. These arcs are
one-dimensional hemispheres, whose

Fiber bundles on the surface of a sphere: at left, the tangent planes and unit circles on the tan-
gent planes, on the right, normal lines (only a few of the “fibers" are shown in each case). Ina
higher-dimensional space, the normal fibers would also have a higher dimensionality.
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“equator” consists of two points. We
construct fiber bundles on each arc. To
assemble a fiber bundle on the full
circle the only question is how to patch
the circles at the “equator.” At one end
we patch with the identity. At the
other end we can patch either with
#—8, giving the torus, or with G« — 6,
giving the Klein bottle.

We can construct circle bundles on a
two-sphere S? (such as the surface of
the Earth) in a similar manner. The
upper and lower hemispheres have a
common boundary, the equator, mea-
sured by the meridian angle ¢. Place a
circle at each point on the two hemi-
spheres, and patch the circle from the
upper hemisphere at longitude £ with
the circle from the lower hemisphere
by rotating through the angle 6.

Other circle bundles could be con-
structed by rotation through angles k¢
for any whole number &. All the circle
bundles can be made this way. For
example the bundle of tangent circles
for the two-sphere corresponds to & = 2.
It is remarkable that Paul Dirac found
this classification of circle bundles on
the two-sphere while studying magnet-
ic monopoles in 1932, outside the
stream of mathematical development.

Dirac started with Maxwell's equa-
tions for the electromagnetic field F,, .
(The relativistic field F, has as its
components the electric and magnetic
field vectors.) In a concise mathemat-
ical notation we can write Maxwell's
equations as dF =0 and d+*F= },
where j is the four-component charge
and current density. The first of these
equations allows us to define a vector
potential, so that F = dA.

To obtain a magnetic monopole,
Dirac interchanged the electric and
magnetic fields to obtain dF = p, and
d+*F=0. He studied the static case for
a point magnetic pole at the origin.
Away from the origin—say on a two-
sphere of positive radius—the magnet-
ic pole density, p,,, vanishes, so that
dF =0. It would be tempting to con-
clude that F=dA on the entire two-
sphere, but that cannot be done be-
cause the total magnetic flux through
the sphere is not zero (as it would have
to be if the field were the curl of a
vector potential). However, on the up-
per and lower hemispheres separately
we can write F=dA, with a potential
A, for the upper and A _ for the lower
hemisphere. Unfortunately A, and
A _ will not agree along the equator. It
is the pasting of circles along the equa-
tor described above that compensates
for the mismatch of A, and A_ and
gives a vector potential on the circle
bundle,

Differential geometry and physics

The classification of bundles and
their invariants, known as characteris-
tic classes, proceeded in the 1930s and



1940s with the work of Whitney,
Eduard Stiefel, L. S. Pontrjagin, and
Shiing Chern. Among other things,
they found interesting integral formu-
las for the invariants of bundles, gener-
alizing the Gauss-Bonnet formula.

In the 1970s, these global invariants
cropped up in physics. To explain how,
we need to explore the idea of curva-
ture a bit further. An observer carry-
ing a frame of reference or clock
around a closed curve can compare his
frame with that of an observer left
behind. How much the frames differ
measures the average curvature over a
surface bounded by the curve. This
curvature for space-time, according to
Einstein, is the gravitational field.

The electromagnetic field can also be
thought of as a curvature, one associat-
ed with a circle bundle. The observer
carries a circle along with him and
records the angle of rotation when he
returns home, thus measuring the
average field in a surface bounded by
the curve. Specifically, the uv compo-
nent of the electromagnetic field tensor
is the infinitesimal rotation an observ-
er experiences on traversing an infini-
tesimal square along the 1 and v coordi-
nate directions.

In a general gauge theory the circle
of rotations in the plane representing
phase shifts is replaced by more compli-
cated symmetry groups of rotations in
higher-dimensional planes. It is gener-
ally believed that the theories of the
weak force and the strong force, and
their unifications with electromagne-
tism will be gauge theories with an
appropriate internal symmetry group.
For example, Yang and Richard Mills
introduced an SU(2) gauge theory in
1954 to study the symmetry (“isospin”)
of the two-component object of proton/
neutron, ignoring the electric charge.

In gauge theories one studies all the
ways of transporting a complicated
symmetry group along curves in space—
time and examines their associated
curvature (or force) fields. Gauge the-
ories break away from space-time in
much the same way that fiber bundles
break away from the tangent bundle.
Space-time has global symmetries, the
Poincaré group. But electromagnetism
and the weak and strong forces have
additional local internal symmetries
giving extra degrees of freedom—the
fibers in the bundle of local symme-
tries. It is natural, then, that fiber
bundles are an appropriate framework
for gauge theories.

The result of infinitesimal transport
of an object with internal symmetries is
given by a vector potential or Yang-
Mills field

A,(x) =A%, (T,

where 7', are generators of a Lie alge-
bra, say sU(N), the skew-adjoint n<n
matrices of trace 0. (As is usual in

Circle bundles on two hemispheres. When
the hemispheres are combined to form a full
sphere the two equators—and the circle bun-
dles on them—must be identified. Exactly how
they are identified determines the topology of
the circle bundle on the complete sphere.

these cases, we are using the summa-
tion convention, in which repeated in-
dices are summed over.) In the case of
electromagnetism the index has only a
single value, and T, = te/#ic.

We can define the “curvature” field
of the vector potential in a way that is
analgous to the case of gravity: the
curvature tensor or field strength is
determined from parallel transport
around infinitesimal rectangles. The
result for the field strength is

F,=d,A —-4A,+[A°T,,AT,]

Hv

(we have used the common notation d,
for d/dx, ). Note that the commutator
term makes the fields nonlinear func-
tions of the vector potentials. All the
trouble and all the interest stem from
the nonlinear term. It is a feature of
the non-Abelian Lie algebra.

For example, in electromagnetism a
gauge transformation ¢(x) (that is, a
function with values in the symmetry
group) transforms the vector potential
A, toA, +¢ '3, 4 and does not affect
the field strengt('l. For a non-Abelian
group A, is changed to ¢ A+
¢ 'd,6and F,, ischangedtod 'F, é.

To obtain a quantum field theory one
starts with a classical Lagrangian den-
sity. For pure gauge theories (without
matter fields) the Lagrangian action
functional is the Lebesgue L* norm of
the field strength:

S)= — Vg j d*x tr (F,.F..)

a direct generalization of gquantum
electrodynamics. (The trace refer to
the matrices T,, which generate our
Lie algebra.) Because the field

strength is nonlinear in the potential,
pure non-Abelian gauge theories are
already far from trivial. The gauge
fields divide themselves into topologi-
cally distinct disconnected classes de-
termined by an integer k, often called
the topological charge (a characteristic
class mentioned above.) It is given by

E=l— 1!8n*‘1fd“xtr (e"PF, F, ;)

where € is the completely skew-sym-
metric Levi-Civita permutation
symbol. Heretofore in physics, the dis-
creteness in quantum mechanics, re-
presented by quantum numbers, came
from eigenvalues of operators and ulti-
mately from symmetries of groups.
There is now the intriguing possibility
that some quantum numbers and con-
servation laws may be topological in
nature. In any case, the physicist, in
calculating physical quantities, inte-
grates over all configurations of the
gauge field. The fact that these fields
split into distinct topological classes
means the vacuum structure is nontri-
vial.

Many problems in quantum field the-
ory can be formulated as an evaluation
of the Feynman-Kac path integral:

CflA)y = e
[J. DAe—SAI] J‘DAﬂA}e—&AJ
A A

The function fis to be invariant under
gauge transformations and the integral
is to be taken over all field configura-
tions. In fact, one of the fundamental
problems of quantum field theory is to
make sense of the path integral: One
really doesn't know what “integration
over all fieids” means. In any case, the
major contributions to ¢ f» will presu-
mably come from the points where the
action is stationary, The saddle-point
method fixes on these stationary
points. One writes the action as a
quadratic term plus a remainder and
uses a perturbative expansion for the
remainder. This program emulates
quantum electrodynamics where the
method has been spectacularly success-
ful because of the small coupling con-
stant.

The stationary points of the action
are determined by the Euler-Lagrange
equations. In this case the equations of
motion are

d,F,

[Ty

5 [A.n'Fw] =0

For quantum electrodynamics these,
together with the automatic Bianchi
identity, are just the free-space Max-
well equations. For the non-Abelian
fields the equations are, of course, non-
linear. If perturbative methods are
used to evaluate the integral, it is
essential to find the critical, or station-
ary, points of the action,

A. Belavin, A. Polyakov, A.
Schwartz, Y. Tyupkin and Y. I. Manin
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in the Soviet Union and Gerhard 't
Hooft in Holland found special solu-
tions giving local minima, of these non-
linear global partial differential equa-
tions on %, Euclidian four-dimensional
space. These solutions have singulari-
ties at a single point and are called
instantons or pseudoparticles. (An
“ansatz” for them is given in terms of
harmonic functions, say A/|x —p|“)
The singularities can be *‘gauged
away" that is, one can find a phase
transformation ¢(x), smooth except at
the singular point, p, such that the
transformed vector potential,
& ‘A#(é + ¢~ 'd, @ is not singular at p.
The transformed vector potential is
smooth near p, and A, issmooth every-
where else including infinity, but the
two potentials have a mismatch on a
three-sphere S* bounding a small ball
around p. To compensate for this mis-
match we have to construct a fiber
bundle on S* (four-space plus infinity—
see the figure at right) whose fibers
have the symmetry SU(2). As in the
case of the Dirac monopole, the bundle
is constructed by pasting fibers along
the boundary-sphere S using the gauge
transformation &(x). In this way one
obtains a vector potential on the entire
fiber bundle that has no singularities.

More generally, Karen Uhlenbeck
has shown that any solution with finite
action and simple (meaning isolated)
singularities really lives on some SU(2)
fiber bundle over the four-sphere. If
fiber bundles had not been invented
earlier, they would have been, in the
1970s, to describe these instanton solu-
tions (just as Dirac found the circle
bundles on the two-sphere).

The solutions locally minimizing the
action are called self-dual solutions,
and their degrees of freedom can be
calculated. It turns out that there are
more self-dual solutions than there are
different kinds of instantons. What do
they look like? It was observed that the
problem of finding self-dual solutions
could be transformed into a problem in
algebraic geometry. That problem
amounts to finding all algebraic plane
bundles over CP*¥, complex projective
three-space (the complex lines in com-
plex four-space). This startling obser-
vation is based on the Penrose twistor
program, a way of looking at massless
particles in physics that is very differ-
ent from the traditional view. Happily
enough, algebraic geometers had inde-
pendently been studying the classifica-
tion problem of algebraic plane bundles
over CP*, and all the self-dual solutions
have been found [by M.F. Atiyah, V. G.
Drinfeld, N. J. Hitchin and Yu. L
Manin, Phys. Lett. 65A, 185 (1978)].

It is always striking when develop-
ments in a branch of pure mathematics
(in this case algebraic geometry, seem-
ingly far removed from practical mat-
ters) give the solution to a problem
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The surface of a
A g sphere corresponds
" point by point to the
full plane plus a
point at infinity.

posed in some other field of science.
Yet it happens often enough not to be
surprising. But one must pause and
contemplate “the unreasonable effec-
tiveness of mathematics in the natural
sciences.” as Eugene Wigner put it.
What is gratifying in this particular
case is that the solutions can be put in
the form of an “ansatz,” or rule, that is
usuable and easily understood without
the language of algebraic geometry.
One can check directly that the ansatz
gives solutions with the right number
of degrees of freedom. Now the physi-
cist need appeal to the mathematics
only to ensure that there are no other
solutions than the ones displayed.

Here is the ansatz for topological
charge k: Let Tlx) be a complex N + 2k
by N matrix-valued function, with 7'7"
the NxN identity matrix. The co-
lumns of T are thus N orthogonal
vectors with N + 2% entries. Choose 2k
additional vectors that are orthogonal
to the column-vectors of T' and denote
the N + 2k by 2k matrix of these vec-
tors by A, so that T'A=0. Let
A, =T'4,T it is a UN) vector poten-
tial. Then A, is self-dual when
Alx)=a + bx and the 2k <2k matrix
A'A commutes with right multiplica-
tion by quaternions. Here a =(a,,a.)
and b = (b,,b,) with the a, and b, con-
stant N + 2k by & matrices and x is the
quaternion x,+ ix, + jx, + kx4, repre-
sented by the 2x2 matrix

Xo+ X0 Xy + x4l

Xg— Xzl Xg— X1

All the self-dual solutions can be ob-
tained in this way.

Global differential geometry and al-
gebraic geometry have helped find the
self-dual solutions, on the classical lev-
el, of the Lagrangian equation of mo-

tion for a non-Abelian gauge theory.
Quantum field theory begins and builds
on these classical solutions. How they
and their configurations, particularly
the new solutions, contribute to the
nonperturbative properties of gauge
theories is still unsettled. In fact, how
to compute in continuous nonperturba-
tive gauge theory is unknown. Because
the geometry and topology of fiber
bundles are so intimately connected
with gauge theories, it may turn out
that mathematical insights will help
provide the key to the nonperturbative
theory.

This article is, in part, adapted from sections
of a chapter on mathematics in Outlook for
Science and Technology: The Next Five
Years, a report prepared by the National
Research Council for the National Science
Foundation. The study chairman was Fred-
erick Seitz and the mathematics chapter was
prepared by Marc Kac, Daniel I. A. Cohen,
Martin Davis, I. M. Singer and Shing-Tung
Yau, The complete report has been pub-
lished by W. H. Freeman (San Francisco)
Other parts of this article are adapted from
the author's paper “On Yang-Mills Fields"
to appear 1n Nonlinear Problems: Present
and Future, D. Campbell, North Holland,
Amsterdam (1982).
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