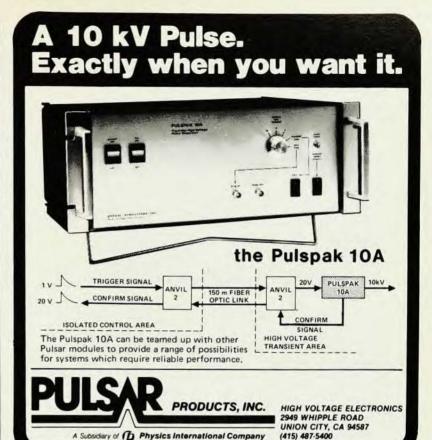
talents to the theory of special relativity and the properties of electrical transmission lines, on which he gave enthusiastic and insightful lecture se-

> J. RAND McNally JR ARTHUR H. SNELL Oak Ridge National Laboratory ALVIN M. WEINBERG Institute for Energy Analysis

David W. Juenker



David W. Juenker, professor of physics at the University of Vermont, died of lung cancer on 30 September 1981, at the age of 54. He was widely known as a skillful experimentalist for his work on electron emission and optical phenomena in metals.

Juenker graduated from Canisius College with a BS degree in physics in 1947 and received his PhD in physics in 1952 from the University of Notre Dame. Subsequently he held a postdoctoral appointment in metallurgy and solid-state physics at Princeton University. His work there on cavity formation in iron oxide earned him a Young Author Award from the National Association of Corrosion Engineers. In 1954 he returned to Notre Dame, where he served for the next ten years as assistant and associate professor of physics and began investigations of the vectorial photoelectric effect, periodic deviations from the Schottky effect, and optical properties of transition metals in the far ultraviolet. He continued these studies, with the help of his students, at the University of Vermont, to which he went in 1964 as associate professor and where he became professor in 1966.

In recognition of Juenker's contributions, the department of physics has established a fund to be used for a David W. Juenker Physics Prize, which will be awarded annually to an outstanding senior physics major.

A. D. CROWELL R. W. DETENBECK University of Vermont [

Circle number 55 on Reader Service Card

People who think water is plentiful and cheap are all wet!

Neslab has a better way to cool.

Using tap water as a cooling source is not only expensive but can cause no end of problems. Rust, scale, particulate matter build up, inconsistent pressure and temperature, lines, drains,

regulators, filters, and other expensive etceteras. Not to mention nationwide water shortages which affect industrial and non-residential users first. Today there's a better way to cool the vast majority of water cooled equipment such as vacuum systems, molding equipment, welders, lasers, and power supplies. Neslab's Coolflow Series of refrigerated recirculators replace tap water and provide a flow of clean cooling fluid at constant temperature and pressure from 40°F to 95°F. Neslab Coolflow units are highly reliable, compact and easy to use. Payback period is usually a year or less. Get all the facts. Contact Neslab today for direct results.

Call toll free 1-800-258-0830 1-(603) 436-9444

NESLAB INSTRUMENTS, INC., 871 ISLINGTON STREET, PORTSMOUTH, N.H. 03801 U.S.A.