
Density functional theory
A scheme for incorporating electron density distributions into calculations
on many-particle systems yields good predictions of quantities such as binding
energy in molecules and phonon spectra in solids.

Michael Schliiter and Lu Jeu Sham

What are the energies and wavefunc-
tions of electrons under the influence of
nuclei as well as other electrons? If we
could solve this general theoretical
problem, we would gain a fundamental
understanding of a healthy chunk of
atomic, molecular and solid-state phy-
sics.

If the nuclei are arranged on a peri-
odic lattice, for example, knowledge of
the electronic states allows us to calcu-

late thermal, optical and magnetic pro-
perties of the solid, equations of state,
electron density distributions (such as
those shown in figure 1) and cohesive
energies, all of which we can compare
with observation. When the lattice is
slightly distorted to simulate the atom-
ic arrangement in the presence of a
phonon, the solution to our problem
allows us to predict the lattice vibra-
tional spectrum. And when we put a

metal's electron and phonon properties
together, we can calculate its supercon-
ducting transition temperature. More-
over, even though we exclude excited-
state properties such as heat transport
as beyond the scope of our problem, its
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Calculated distribution of charge as it arises from chemically active valence electrons. The
contours of equal charge density show a nitrogen impurity atom in an otherwise perfect
diamond crystal (left) and a perfect silicon crystal (above). The nitrogen atom, being more
electronegative than its diamond host, attracts extra electrons. The bonding charge between
pairs of carbon atoms and between carbon and nitrogen atoms shows a characteristic
double-peak structure, indicated on the left by pairs of closed loops between atoms. This is
not found in other tetrahedral semiconductors such as silicon, whose covalent bonds show a
single concentration of charge between atoms. Large interstitial regions are virtually empty,
creating a periodic network of electronic charge that is characteristic of insulators and
semiconductors. In metals the charge is more evenly spread out. The calculations were done
with a local-density functional method using pseudopotentials. A Green's function scattering
technique was used to describe the nitrogen defect. (From reference 9.) Figure 1

solution is, nonetheless, basic to the
calculation of these properties as well.

In this article we will examine a
particular approach to the problem
posed above, an approach that has de-

veloped over the last seventeen years
into a useful tool for the calculation of
electronic properties and for the gen-
eral exploration of solid-state physics:
the density-functional method.

Until the mid-sixties, calculations of
the electronic states in solids tended to
emphasize either the electron-nucleus
interaction or the electron-electron in-
teraction. Band structure calcula-
tions—solutions of the one-electron
Schrbdinger equation—generally em-
phasize the electron-nucleus interac-
tion. Progress in obtaining accurate
band structure calculations has been
such that, today, different methods of
solution yield answers in quantitative
agreement with each other as long as
we start with the same effective one-
electron potential.

As a result, we can now aim ques-
tions at the adequacy of the one-elec-
tron potential in accounting for the
electron-electron interaction as well as
for the lattice interaction. The first-
principles Hartree potential, where the
electron-electron interaction is ap-
proximated by the Coulomb potential
arising from the charge distribution of
the electrons treated as fixed, is gener-
ally regarded as inadequate. The Har-
tree-Fock approximation has the Pauli
principle built in explicitly, which re-
sults in what we call the exchange
interaction among electrons of equal
spin. Electrons of opposite spin remain
unaffected. This approximation has
pathological features, such as a zero
density of states at the Fermi level in
metals. Moreover, it is so complex in
solids that few successful calculations
have been done.

On the other hand, the theory of
electron correlation has made great
strides in the "jellium" approximation,
that is, where the solid is modeled by a
system of interacting electrons in a
uniform positively-charged back-
ground. This approximation neglects
the effect of the lattice potential. The
twin approach of first-principles calcu-
lations, utilizing the methods of quan-
tum field theory, and the phenomenolo-
gical theory of Lev Landau, first
constructed for the Fermi liquid heli-
um-3, led to reasonable values for the
cohesive energy, enhancement of the
effective mass and specific heat (or
density of states), and to knowledge
about a veritable zoo of collective
modes in interacting electron systems.
Clearly, jellium is at best a zeroth order
approximation for metals.

The next order approximation is
made possible by James C. Phillips and
Leonard Kleinman's theory of the pseu-
dopotential.' The pseudopotential in-
cludes both the lattice potential and a
repulsive term that simulates the effect
of the Pauli principle—the orthogonali-
zation of the conduction-electron wave-
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function to the core-electron wavefunc-
tion. The near cancellation of these
two terms in the core region makes the
pseudopotential weak in general, so
that—to a good approximation—one
can incorporate it into the electron-gas
theory by perturbation methods. This
procedure yields reasonable qualitative
results for the "simple" metals—those
in the upper left-hand corner of the
periodic table—and for "nearly-free -
electron" semiconductors, namely sili-
con and germanium.

The density-functional theory repre-
sents one further attempt to carry out
the next stage of integrating the lattice
potential with the mutual interaction
of electrons. Here a solid is regarded as
a system of many electronics with the
same mutual interaction, embedded in
the lattice of nuclei. The ground-state
electron density distribution plays an
important role, as it did in a forerunner
of this theory, the Thomas-Fermi
method, which we will discuss later.

The density-functional theory yields
two results, one important conceptual-
ly and the other a framework for practi-
cal approximations:
• The solution of the many-body
ground state is reduced exactly to the
solution for the ground-state density
distribution given by a one-particle
Schrodinger equation. The effective
potential in the Schrodinger equation
includes, in principle, all the interac-
tion effects: the Hartree potential (the
Coulomb potential due to the charge
distribution when the electrons are
treated as fixed), exchange (the poten-
tial due to the interaction described by
the Pauli exclusion principle), and cor-
relation (the potential due to the effect
of a given electron on the overall
charge distribution).
• An approximation for the effective
potential is given by regarding a small
neighborhood of the electron system as
behaving like a jellium at the local
density. This is a concept from the
Thomas-Fermi method.

These results form the so-called "lo-
cal density-functional" approximation,
which, through the efforts of many
researchers over the last one and one-
half decades, has become a useful tech-
nique for computation of the properties
of solids. In what follows, we give a
qualitative account of the density func-
tional theory, survey its many applica-
tions and examine its shortcomings in
anticipation of future work.

The formalism

The whole theory is based on the
remarkable theorem2 of Pierre Hohen-
berg and Walter Kohn: given a mutual
interaction—the Coulomb interaction
in our case—the external potential v(r),
and hence all properties of the many-
particle system, are determined by the
ground-state electron density distribu-

tion n(r). (The caveat that an arbitrary
constant added to v(r) cannot be deter-
mined is understood.) In Schrodinger's
theory the converse is valid: We accept
readily that n(r) and all properties of
the system are functionals of v(r), and
can be determined from v(r), in princi-
ple, by the many-particle Schrodinger
equation. The validity of Hohenberg
and Kohn's converse is not so obvious.
Indeed, the theorem was at first greet-
ed with great skepticism, based on the
feeling that the properties of the sys-
tem could be determined from the one-
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DISTANCE FROM FIXED ELECTRON (r) (arbitrary units)

The electron-electron interaction in an N-
electron system is illustrated by these condi-
tional probability distributions p(r) of N- 1
electrons around one electron with given spin,
situated at r = 0. In the Hartree approximation
(a) all electrons are treated as independent
and p (r) is structureless. In the Hartree-Fock
approximation (b) the many-electron wave-
function reflects the Pauli exclusion principle.
Thus around the electron at r = 0 (and around
all other electrons as well) we see the so-
called exchange hole, in which the density of
electrons having like spin is reduced (black
curve) while the density of electrons having
opposite spin is unaffected (colored curve).
The underlying thought of the local-density
approximation (c) is that electrons of both
spins show the same hole, the exchange-
correlation hole. The local-spin-density ap-
proximation (d) allows for differently shaped
holes in the distributions of electrons with
equal spin (black curve) and electrons with
opposite spin (colored curve). Figure 2

particle density matrix and that the
density n(r), being the diagonal part of
the density matrix, contained much
less information. The proof of the Ho-
henberg-Kohn theorem, based on a
reductio ad absurdum argument using
the variational principle, was suffi-
ciently simple as to receive little criti-
cism. Instead, skeptics made valiant
and ingenious attempts to construct
counterexamples, from which we
learned to state the theorem with more
precision. The theorem has apparently
so far stood the test of time.

One can write the ground-state ener-
gy formally as the potential energy of
the density n(r) in the external poten-
tial v(r) plus a term F[n] which, be-
cause of the theorem, is a functional of
n(r) only. (A functional is a quantity
that is dependent on a variable func-
tion and not on a number of discrete
independent variables.) A variational
theorem is then derived, which states
that, given the external potential v(r),
the correct electron density is the one
that yields the smallest value for this
expression of the energy. The vari-
ational equation in principle deter-
mines the density, given v(r). The prob-
lem is that the functional dependence
of the remainder F[n], which contains
the kinetic, Coulomb, exchange and
correlation energies, is not really
known. If the local-density approxima-
tion as described above is applied to the
entire F[n] term, we get the Thomas-
Fermi equation together with the cor-
rection due to exchange and correla-
tion.

Kohn and Sham3 noted that in a non-
interacting system, F[n] is the single-
particle kinetic energy and the solution
of the variational equation in func-
tional derivatives of F [n] is equivalent
to the solution of the one-particle
Schrodinger equation for the density.
In an interacting system, on the other
hand, the total energy may be separat-
ed into the kinetic energy of the non-
interacting system at the same density
distribution, plus the rest, which in-
cludes the lattice potential energy, cor-
rections to the kinetic energy, the Har-
tree potential, exchange and
correlation. We may then regard solv-
ing the equation for the functional
derivative as equivalent to solving a
one-particle Schrodinger equation with
an effective potential that is just the
functional derivative of the total ener-
gy minus the kinetic energy of the
corresponding non-interacting system.
In this sense, the solution of the many-
electron ground state reduces to that of
a one-electron Schrodinger equation.
All the interaction physics is lumped
into the construction of the effective
potential.

This reduction becomes a practical
scheme when we are given a reasonable
approximation for the effective poten-
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tial. In the spirit of two of its anteced-
ents (the Thomas-Fermi approxima-
tion and the Slater exchange), the
local-density approximation is applied
to the total energy term minus the
kinetic energy of the non-interacting
system of equivalent density distribu-
tion. That is, the energy term is given
by replacing it in a locality by that of
the homogeneous electron gas at the
same density. Because the rapidly var-
ying kinetic energy is not approximat-
ed by the local expression as in the
Thomas-Fermi method, one can retain
the atomic shell structure in the den-
sity distribution and avoid the diver-
gence of the density at the nuclear
potential singularity.

The exchange and correlation part of
the effective potential is just the corre-
sponding part of the chemical potential
of the homogeneous electron gas at the
local density. The exchange term alone
turns out to be the Dirac expression for
the exchange term in the Thomas-
Fermi approximation, an expression
that is two-thirds of the Slater ex-
change; in the Slater exchange the
energy changes as the cube root of the
electron density n(r). Historically, this
led to two approaches to the effective
potential:

DISTANCE (r/ao)

Components of the atomic potential for
silicon, as given by the self-consistent solution
in the local-density functional method. The ion
core is described by a pseudopotential ion that
at large distances behaves like an attractive
Coulomb potential (-ZJr, broken line) aris-
ing from the silicon valence charge. At short
distances the pseudopotential depends on
angular momentum to describe correctly the
influence of the atomic core. The repulsive
potential Vh, due to the electrostatic interac-
tion between valence electrons, is cancelled
at large distances by the attractive ion-core
potential V,ori. Because of this cancellation,
the integrated energy of the local-density
functional theory's exchange and correlation
potential V,c amounts to about 30% of the
total energy of the silicon valence system. The
Rydberg is 13.6 electron volts; a0, the Bohr
radius, is 0.529 angstrom. Figure 3

• What might be termed the chemical
approach was initiated by John C.
Slater's suggestion of incorporating
into his exchange a multiplicative con-
stant a that is determined phenomeno-
logically, for example by reproducing
the ground-state energy of an atom.
This is the widely used "Xa method."
• What might be termed the physical
approach is the original local-density
approximation of Kohn and Sham,
which depends on a knowledge of ex-
change and correlation in the jellium.
Researchers have put considerable ef-
fort into deriving convenient correla-
tion functionals interpolating between
regimes of high and low density.

So far we have obtained only the
ground-state energy and density. Ex-
tension to finite temperatures is
straightforward by virtue of David
Mermin's proof4 of the Hohenberg-
Kohn theorem for the free energy at a
finite temperature. Extension to finite
magnetic fields is possible by enlarging
the density variable to include unequal
local spin densities; this is known as the
local spin-density approximation.

When we look at some results we will
see how accurately the local-density
approximation yields ground-state pro-
perties. Some researchers have devel-
oped an argument that gives a measure
of understanding to the success of the
local-density approximation. One can
express the exchange- and correlation-
energy functional exactly in terms of a
pair-correlation function, which may
be regarded as describing the ex-
change-correlation hole around an
electron. The local-density approxima-
tion as described here amounts to using
the exchange-correlation hole in a ho-
mogeneous electron gas at the local
density. It preserves the sum rules
that express the total charge of the
exchange-correlation hole as being
equivalent to the removal of one elec-
tron (see figure 2).

Ground-state silicon

Most of the calculations that apply
the local-density functional approxima-
tion to atoms, molecules and solids
involve complicated numerical mani-
pulations that are necessary to solve
Schrbdinger's equation, and therefore
the accuracy of the numerical solution
for a given density functional is often
unknown. Obviously, the risk of nu-
merical inaccuracy increases in going
from simple systems such as atoms to
complicated systems such as semicon-
ductors or transition metal surfaces.
Among the variety of high-quality cal-
culations, we select as an illustrative
example recent work by a group at the
University of California, Berkeley, on
the phase transformation and lattice
dynamics of silicon.5 Later, we will
give a brief survey of other applica-
tions.
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Calculated total structural energy of silicon
atoms held to each of six hypothetical lattice
arrangements. Energies are a function of
atomic volume, which is normalized here to
the actual ground-state volume of silicon in its
natural diamond structure. Under external
pressure, silicon follows the path 1-2-3-4 and
undergoes a phase change to the /?-tin struc-
ture. At pressures corresponding to volumes
between points 2 and 3 silicon is a mixture of
the two structures. The tangent points 2 and 3
give the calculated phase transition volumes,
which are in excellent agreement with experi-
ment. (From reference 5.) Figure 4

Other than using the local-density
functional approximation to describe
exchange and correlation, the silicon
calculations employ two more approxi-
mations:
• the "frozen core" approximation,
which considers nuclei plus core elec-
trons as a neutral "frozen" unit that is
not responsive to changes in chemical
environment, and
• the simulation of this core by an ion-
core pseudopotential.

The pseudopotential concept per se is
very general and has been used exten-
sively in the past with various degrees
of sophistication (see Marvin L. Cohen's
review in PHYSICS TODAY6). Recently,
however, several groups have devel-
oped theoretical schemes to produce
parameter-free pseudopotentials of
high accuracy. By construction, these
potentials exactly simulate the interac-
tion of the valence electrons with the
cores in the atomic limit (that is, for a
chosen atomic reference state). And,
also by construction, they guarantee
maximum transferability to other
chemical environments. The impor-
tant feature is that only the ion-cores
are represented by pseudopotentials
while the valence electron screening
part is recalculated in the actual
chemical situation. This is in contrast
to the empirical one-electron pseudopo-
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Ti Cr Fe Ni

ELEMENT

Ground-state properties of some transition
metals, as calculated (curves) and measured
(unconnected points). The Wigner-Seitz radi-
us is a measure of the lattice constant. These
graphs focus on the elements for which the
local-density functional calculations are least
accurate: the middle of the periodic table's
first row of transition metals, in which magnet-
ic anomalies occur that are not described in
the chosen spin-unresolved formalism. (From
reference 8.) Figure 5

tentials we mentioned earlier. Figure
3 ilustrates the advantage of local-
density functional calculations over
other many-electron schemes. Few
smooth potentials describe systems of
atoms, molecules or solids to a high
degree of accuracy. Transition metal
atoms can be treated with the same
accuracy and rigor as can simple s or p
atoms. While not being weak perturba-
tions, these ion-core pseudopotentials
have no sharp singularities (in contrast
to the "true" ion cores) and accurate
self-consistent numerical solutions of
Schrodinger's equation are generally
feasible using expansion techniques.

The results of the silicon calculations
are impressive. Among the six crystal
structures that cover about 90% of all
existing elemental solids (diamond,

hexagonal diamond, /?-tin, hep, bec and
fee), the calculations show correctly
that the diamond structure is the most
stable when the temperature is zero
and there is no external pressure. The
stable diamond structure is separated
by only about 20 millielectron volts per
atom from the hexagonal modification.
This small energy arises from struc-
tural differences beyond the third near-
est neighbors, which, for example, sepa-
rate compound-semiconductors into
zinc-blende and wurtzite structures. In
the diamond structure, calculated and
measured static ground-state proper-
ties, such as the equilibrium lattice
constant, bulk modulus and cohesive
energy, agree to better than a few
percent. The calculations also show
correctly that silicon will transform to
the /?-tin structure under high pres-
sure. The transition volumes, which
are extremely sensitive quantities, are
reproduced to within 1% of experimen-
tal values (see figure 4).

One can calculate the effects of lat-
tice dynamics by assuming adiabatic
behavior and comparing crystal energy
differences for various "frozen-in"
phonon distortions. Calculations
match measurements to within better
than 3% for acoustic and optical phon-
ons on the Brillouin zone surface and at
the zone center. In particular, calcula-
tions of the very soft transverse acous-
tic mode, characteristic of shear insta-
bilities in tetrahedral semiconductors,
show only a 1% error. Moreover, an-
harmonic effects are described within
10%, which is remarkable in view of
the fact that many theories cannot
even reproduce their correct signs.

Overall, we should regard the silicon
results as an important confirmation of
the validity of the local-density func-
tional approach for studying electronic
ground-state properties of systems with
s and p valence electrons and with
sizeable external lattice potential. All
these results stand in strong contrast to
the poor quality of calculated excita-
tion energies. If one takes the energy
eigenvalues of the local-density func-
tional Schrodinger equation to be exci-
tation energies, just as Koopmans's
theorem tells us to do in Hartree-Fock
theory, errors up to about 50% occur in
comparison to experimental gap val-
ues. We will come back to this di-
lemma after looking at some other
applications.

Other applications
The example of silicon illustrates the

great accuracy possible using the local-
density functional approximation. The
same approximation has been applied
to a wide range of systems; the number
of contributions is enormous and cer-
tainly is not exhausted in the following
review.

Atoms. Because many atoms have

unpaired electrons, the two-component
spin-up and spin-down density distribu-
tions replace the single density vari-
able. Calculations have been done for
many atoms. While the computations
are much simpler than in the unres-
tricted Hartree-Fock scheme, many of
the calculated atomic properties are at
least as accurate. The list includes
total energy, ionization potential (as
the difference between the total ener-
gies of the ion and the atom), approxi-
mate multiplet energies and hyperfine
interaction. Trends in the properties of
elements in the periodic table, reflect-
ing Hund's rule on the order of filling of
orbitals, are reproduced and the correct
ground states are generally predicted.
There are a few exceptions, such as
titanium, vanadium and cobalt, where
the d " ~ V configuration is favored by
local-spin-density calculations over the
correct d " ~ 2s2 groundstate.

Molecules. A major difficulty in mo-
lecular calculations is still accuracy in
the solution of the Schrodinger equa-
tion. Investigators have taken advan-
tage of the often-used scattered-wave
method7 to study molecules as large as
tetrathiofulvalene-tetracyanoquinodi-
methane (known as TTF-TCNQ). Se-
veral other techniques have been used
since with considerable success. Other
researchers have made quantitative
studies of many diatomic molecules
using the "linear combination of muf-
fin-tin orbitals" method and the "linear
combination of Gaussian orbitals"
method. Generally, experimental
trends in molecular binding energy,
bondlength and vibration frequency
are reproduced with less than 10%
error. The results of the local-spin-
density approximation are better than
those of the Hartree-Fock approxima-
tion because of the former's inclusion of
correlation effects. Particularly strik-
ing results have been obtained by re-
searchers in Julich on the reversal of
the dipole moments in CO and NO and
the binding of the group IIA dimers,
Be2 through Ba2, which are reproduced
by the local-spin-density method but
not by the Hartree-Fock scheme.

Bulk metals. The most comprehensive
description of metal properties is un-
doubtedly given in the book by Victor
L. Moruzzi, James F. Janak and Arthur
R. Williams.8 They report properties
for the first 50 elemental metals, calcu-
lated with a band structure scheme
(Kohn-Korringa-Rostocker) using the
local-density functional or the local-
spin-density approximation for ex-
change and correlation. The agree-
ment with experiment of binding
energy, lattice parameter and bulk mo-
dulus is generally around 10%, except
where certain magnetic anomalies oc-
cur, as shown in figure 5.

There has been a most exciting ad-
vance in the theory of magnetism. The
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works of many researchers demon-
strate the theoretical ability of the
local-spin-density approximation to
predict ferromagnetism and to calcu-
late the magnetic moments and suscep-
tibilities. The splitting of the exchange
interaction between spin-up and spin-
down bands seems to be in good agree-
ment with photoemission data for iron
and cobalt but not nickel. Again this
points to some inadequacy of interpret-
ing the method's eigenvalues as excita-
tion energies.

Another application that is being
explored is the equation of state of
metals under high pressure. There is
evidence of improvement over approxi-
mations of the Thomas-Fermi type.

Bulk semiconductors and insulators.
Semiconductors and insulators exhibit
open (not closely packed) structures
and strong lattice potentials. This ne-
cessitates very accurate numerical pro-
cedures to solve Schrodinger's equa-
tion. Investigators have today
developed pseudopotential methods, lo-
cal-orbital methods and methods simi-
lar to the augmented-plane-wave
scheme that yield highly accurate nu-
merical solutions. They apply these
techniques to the study of systems
ranging from the usual semiconductors
to large-gap insulators such as dia-
mond, boron nitride, lithium fluoride
and the rare-gas solids. For calculating
cohesive energies and other ground
state properties the local-density func-
tional approximation is a vast improve-
ment over the more complicated Har-
tree-Fock approximation, particularly
in the rare-gas solids where the latter
method gives no binding. The calculat-

12

ed gap energies, however, are much too
small—a familiar failure of the local-
density functional approach.

Defects. Localized defects or impuri-
ties in either metals or semiconductors
are challenging systems for the theo-
rist. Of particular interest are systems
of intermediate defect-localization and
strong coupling to the host environ-
ment. These systems have been most
widely described by the same approach
used for large molecules or clusters.
Among the many systems that re-
searchers have looked into, we will
mention the Xa-scattered wave calcu-
lations used to describe lattice defects
and transition-metal impurities in se-
miconductors. In spite of the more
qualitative insight gained by these cal-
culations it is generally felt that prohi-
bitively large cluster sizes are neces-
sary to obtain quantitative results.

One can circumvent these difficulties
by using a Green's function approach to
the isolated defect in an otherwise per-
fect host crystal. For instance, investi-
gators have used this method to study
the electronic structure of magnetic
impurities in metals such as copper and
silver. Using a spin-resolved density
functional, they find the calculated
magnetic moments in very good agree-
ment with room-temperature suscepti-
bility measurements. Local-density-of-
states calculations are in general
agreement with the Anderson model,
which predicts well-resolved reson-
ances of local moments in metals.

A series of self-consistent local-den-
sity functional calculations using
Green's functions has recently also
been applied to semiconductors. The

6 0 2 4 6 0

DISTANCE ALONG SURFACE (r/a,,)

Surface charge density for nickel as given by local-density functional calculations. Contours
of equal charge density are logarithmically spaced to emphasize the exponential decay of
charge in the vacuum above the metal's surface. The figure shows clean nickel (left) and
hydrogen-covered nickel (middle and right) with the hydrogen in slightly different positions. The
small changes in the 1Cr5 regime, which is about 5 angstroms above the surface, can be
measured by diffracting slow helium atoms off the surface. Distances are given in units of the
Bohr radius a0; charge density is given in electrons /a0

3. (From reference 10.) Figure 6

calculations concern vacancies in sili-
con, diamond, gallium arsenide, gal-
lium phosphide and also substitutional
impurities such as hydrogen, carbon,
nitrogen or oxygen (see figure 1). All
the defects give rise to localized states
in the bandgap of the host semiconduc-
tor. Electronic screening effects, de-
scribed self-consistently in the local-
density functional framework, are
particularly important in the case of
the more-ionic hosts such as the gal-
lium compounds mentioned above, and
produce defect potentials that are high-
ly localized (to within the nearest-
neighbor range). The calculations
show that lattice relaxation effects
around the defect are of equal or even
higher importance. As Gene Baraff
and his collaborators demonstrated, in
the case of the silicon vacancy the
distortions are strongly affected by the
amount of charge localized at the de-
fect. For this particular example, they
calculated that (Jahn-Teller) coupling
to the lattice produced large, energy-
lowering distortions, strong enough to
overcome the Coloumb repulsion of ex-
tra electrons in the localized state.
Thus they predicted an "inverted-lev-
el" scheme or "negative U" situation
for the simple defect and this was later
verified experimentally.

Surfaces. The use of local-density
functional approximations in describ-
ing metal or semiconductor surfaces
began with the pioneering work of
Norton Lang and Kohn on structure-
less "jellium" surface models. While
general features like (Friedel) charge
oscillations were found, the absence of
discrete atomic structure in the model
led to sizeable errors in properties such
as work functions or surface energies,
errors that could be corrected to some
extent by second-order perturbation
theory of the psuedopotential.

At Bell laboratories, Joel Appelbaum
and Donald Hamann introduced calcu-
lations with real surface structures in
the early 1970s and this has since led to
a wealth of work on both metal and
semiconductor surfaces. These calcula-
tions involve rather complicated tech-
niques that are necessary to solve
Schrodinger's equation in the surface
region. Because of the lack of numeri-
cal accuracy, earlier calculations were
mainly aimed at conveying global sur-
face characteristics and general spec-
tral features, such as the position and
dispersion of surface states, which could
be compared qualitatively with data
from photoemission surface experi-
ments. This "finger-printing" tech-
nique proved to be particularly power-
ful in determining the structure of
adsorbates and the nature of surface
reconstructions. These calculations
were complemented by local-density
functional calculations of states in the
higher energy range (10-100 eV), in-
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tended to explain the results of low-
energy-electron diffraction experi-
ments.

Improved numerical techniques are
leading to more quantitative results,
comparable to results of the studies on
bulk metals and semiconductors. Re-
cent calculations on the (111) surface of
aluminum, for instance, yield an excel-
lent value for the work function (about
1% error). Groups at Bell, IBM and
Berkeley have had encouraging results
in their attempts to determine struc-
ture by the direct minimization of the
surface energy. Hamann demonstrat-
ed recently that local-density func-
tional calculations on surfaces can be
refined to a degree that permits the
determination of the small, structure-
induced charge modulations that occur
some 5 to 10 A outside the surface.
These charge-density modulations,
which are as small as 10"5 times the
charge density in the chemical bonds in
the crystal, can be determined experi-
mentally by helium diffraction. Some
examples are shown in figure 6.

Electrons in inversion layers. The local-
density functional approach has also
been used to study quasi-two-dimen-
sional systems of electrons. One can
form these systems at the insulator-
semiconductor interface in a metal-
insulator-semiconductor field-effect
transistor (MISFET) by applying an elec-
tric field normal to the sandwich. We
can account for the variation of the
effective potential normal to the inter-
face, within the density-functional for-
malism. The interaction effect of this
many-electron system appears well giv-
en by a combination of the local-density
functional approximation and the Ha-
miltonian of an effective-mass-like
model, as recent calculations of inver-
sion-layer energy bands demonstrate.

In silicion or germanium, the elec-
trons have both spin degeneracy and
valley degeneracy, with the latter be-
ing due to the existence of more than
one conduction band minimum. Some
researchers have suggested that the
low-density behavior of the inversion
layer may be due to a phase transition
involving the removal of the valley or
spin degeneracies. Measurements of
conductivity oscillation in high mag-
netic fields and precise measurements
of optical absorption have since con-
firmed the existence of such a phase
transition. This is an interesting two-
dimensional analog of a ferromagnetic
gas, which we will describe next.

Metal-insulator transitions. Several
groups have recently used the local-
spin-density approximation to study
the occurrence of metal-insulator tran-
sitions in a three-dimensional gas of
interacting electrons. The problem is
simulated by Nevill Mott's model of
electrons in a lattice of fixed point
charges: a hydrogen lattice. The
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Total energy per proton as a function of
density (or the mean distance between elec-
trons), calculated for a system of hydrogen
atoms on a hypothetical body-centered-cubic
lattice. The system undergoes various phase
transitions from the paramagnetic phase (P)
as the density is lowered. FM is the ferromag-
netic, metallic phase; Fl is the ferromagnetic,
insulating phase, and AF is the antiferromag-
netic phase, which shows a metal-insulator
transition at the position indicated by the
arrow. (From reference 11.) Figure 7

ground state is determined variational-
ly as a function of density. If the high
space-group symmetry of one atom per
unit cell is maintained, the overall
picture shows two phase transitions: a
second-order transition at higher den-
sity from the paramagnetic metal to
the spin-ordered metal, followed by a
first-order transition at lower density
to a spin-ordered insulator. If the sym-
metry is allowed to be lowered to two
atoms per unit cell, these two transi-
tions are replaced by a single transition
into an arciiferromagnetic ground
state. These findings demonstrate the
ability of the local-spin-density approx-
imation to explain the occurance of
phase transitions as the result of a
trade-off between exchange-correla-
tion energy and kinetic energy (see
figure 7).

Future directions
We have pointed out many successful

applications of local-density functional
or local-spin-density theory. However,
there are also failures, notably in two
areas:
• the ground states of some open-shell
systems, such as 3d transition-element
atoms, that are sensitive to the ex-
change and correlation energy, and
• excited "quasiparticle" states of the
system.

With respect to the first problem,
there is much interest in working on
improved functionals that go beyond
the original Thomas-Fermi-like, strict-
ly local-density approach, to include
some nonlocal effects. The new ap-
proaches focus on the exact fulfillment
of the corrrelation sum rule we men-
tioned earlier, and on the exact elimi-
nation of spurious terms left over by
the incomplete cancellation of the elec-
tron self-interaction in the Hartree

term. However, functionals including
the nonlocality of real space may still
need further improvement. Recent
studies of atomic multiplets seem to
indicate the need for the nonlocal fun-
tional to depend on the particular sym-
metry of the state under consideration.

The description of excitations using
the local-density functional scheme is a
further major remaining problem. By
analogy to Koopmans's theorem in
Hartree-Fock theory, the Lagrange
parameters or local-density functional
eigenvalues are often interpreted as
approximate excitation energies. This
can lead to sizeable errors—for exam-
ple, atomic ionization energies that are
underestimated by several volts, or
band gaps that are up to 50% too small.
The error originates from
• the neglect of electronic relaxation
upon excitation (meaning that Koop-
mans's theorem is not valid), and
• the "misinterpretation" of eigenval-
ues.
In local-density functional schemes the
eigenvalues are equivalent to the deri-
vative of the total energy with respect
to occupation, evaluated at a particular
configuration, such as the ground state.
The eigenvalues are thus not finite
differences of total energies as in Har-
tree-Fock theory. Slater was the first
of many to recognize that the exact
elimination of electron self-interaction
(as is done in Hartree-Fock but is not
necessary in a local-density functional
theory) would account for a large frac-
tion of the error in excitation energies.
For localized systems one can eliminate
most of the problem by considering
finite differences in the total (local-
density functional) energy either di-
rectly, by comparing two calculations,
or by using Slater's transition-state
arugment. Little is known, however,
about what to do for extended systems,
where it may be inherently necessary
to consider explicitly the energy depen-
dence of the self-energy operator in
describing excitations. Kohn and
Sham have pointed out that in a formal
sense the self-energy is also determined
by the ground-state density, and they
have given an approximate scheme for
calculating it in the limit of low-energy
excitations.

In the framework of many-body per-
turbation theory on the other hand, we
can determine the self-energy iterative-
ly from the complete excitation spec-
trum. Investigators have undertaken
several attempts along these lines to
calculate quasiparticle excitation spec-
tra. While these calculations clearly go
beyond any local-density functional
theory, the hope is to arrive at schemes
that allow us to calculate excitation
energies with a simplicity comparable
to the very successful local-density
functional ground-state calculations.

If we accept the evidence gained so
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far, then the density functional meth-
od, in conjunction with practical ap-
proximations, is capable of describing
ground states of interacting systems. It
is, therefore, a useful tool for further
exploration in solid-state physics.
Used in combination with low-energy-
electron diffraction or surface-atom
scattering, we can investigate the fasci-
nating variety of atomic arrangements
on surfaces and their underlying phys-
ical causes. In conjuntion with x-ray
scattering and x-ray absorption, we can
deduce structures and bonding proper-
ties of new, complex materials. Calcu-
lations of solid structures subject to
various external factors such as pres-
sure, can help us decipher structural
phase transitions. Accurate calcula-
tions of the effective interaction
between atoms in solids or on surfaces
may become indispensable to new
methods of statistical mechanics that
are being applied to the study of proper-
ties associated with phase transitions.

Simple models, which are often inva-
luable as the cutting edge in under-
standing new phenomena, sometimes
contain assumptions that we can check
by such precise calculations, and con-
versely, precise calculations can point
the way for the construction of simple
models. Although efforts to perfect the
density functional construction might
lead to the making of an automaton
that could calculate certain properties
from scanty input, we do not regard
this as a valid end in itself. Such
computations would be limited by the
physical ideas built into the theory.
However, the interplay between obser-
vation, physical insight and the results
of such careful computations will, we
hope, lead to new vistas in the physics
of the condensed state.
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