at a family reunion. Part of this no doubt stems from the predominance of dynamics, the study of atmospheric motions, in the minds of meterologists. Contributing to this neglect has been the absence of a suitable textbook. Although there are several fine monographs on topics of such limited scope as radiative transfer and inversion theory, none of them taken separately meets the needs of instructors of introductory courses. Therefore, the effort of K. N. Liou, who is a member of the meteorology faculty at the University of Utah, to fill this gap with An Introduction to Atmospheric Radiation is to be greeted with enthusiasm: The table of contents promises a set of topics that would be ideal for senior and graduate-level courses.

Enthusiasm soon gives way to disappointment, however, as one encounters page after page of awkwardly written prose full of errors in grammar and syntax. The author's consistent inability to use the definite article idiomatically ("Figure 1.8 shows an energy level diagram for the hydrogen.") suggests that English is not his first language. If this is so, the publisher had a responsibility to edit the manuscript carefully. This, however, was not done. No competent copy editor, even one working in haste, could have failed to notice the many glaring errors.

The author, however, must assume responsibility for the conceptual errors: Their abundance seriously flaws the book. Radiometric and photometric units are confused (page 6). In the derivation of the Schwarzschild equation (page 22) the medium is said to be a blackbody, which it is not unless it is optically thick. What is meant is that it emits according to the Planck function. The author repeatedly refers to the refractive index of molecules when he means gases, and on page 79 the refractive index of anisotropic molecules is said to be a vector, which it is not. The derivation of the optical theorem on page 136 is an incoherent and confusing mixture of two approaches. The author's grasp of the physical significance of the complex refractive index is particularly weak: On page 78 the real part is associated with scattering and the imaginary part with absorption; a perfect reflector is asserted to be one with a vanishing imaginary part (page 138).

This book is a collection of formulae unilluminated by physical insight and bound together by uninspiring, unidiomatic prose. Clear physical explanations of basic concepts and physical phenomena are not given. A course taught from this book would pit its author against the instructor, who would have to correct the numerous errors. Indeed, one of my colleagues at another university is using it: Both he

and his students find it confusing and lacking in physical interpretation.

CRAIG BOHREN
Pennsylvania State University

new books

Theory and Mathematical Physics

The Many-Body Problem Jastrow Correlations Versus Brueckner Theory. Pro-

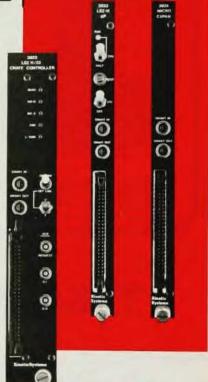
ceedings, Granada, 1980. R. Guardiola, J. Ros, eds. 372 pp. Springer, New York, 1981. \$23,00

Differential Geometric Methods in Mathematical Physics. Proceedings, Clausthal, 1978. H. D. Doebner, ed. 329 pp. Springer, New York, 1981. \$20.00

Astronomy, Cosmology and Space Physics

Reference Coordinate Systems for Earth Dynamics. Proceedings of the 56th Colloquium of the International Astronomi-

New 8033 CONCEPT gives you the best of two worlds-


CAMAC control and LSI-11 power

Now you can realize all the advantages of a cost-effective, compact LSI-11 micro-computer system within a CAMAC crate. Another total system concept, the 8033 can be used as an autonomous standalone system or as an integral part of a CAMAC serial highway. Its applications include laboratory automation, industrial process control, distributed systems, and software development.

The 8033 CONCEPT offers you a unique I/O-addressable crate controller concept where four registers in the crate controller can be mapped anywhere in the LSI-11's I/O page. This concept eliminates address restraints on the I/O page and permits your application software to take full advantage of the LSI-11/23's speed.

In addition, the 8033 CONCEPT features:

- · full LSI-11 bus compatibility
- four strap-selectable LSI-11/23 interrupt levels
- support for multiple crates on a single LSI-11 bus
- software drivers and FORTRAN-callable subroutines available and supported by KineticSystems

The 8033 CONCEPT System

This LSI-11/23 CAMAC system is an expandable modular device composed of these major components:

- a 1500 25-slot powered CAMAC crate (housing your microcomputer system and process modules)
- a 3923 CAMAC crate controller for LSI-11 (serving in either main or auxiliary mode)
- a 3823 Processor Adapter Unit (housing an LSI-11/23 CPU module)*
- a 3824 Peripheral Adapter Unit (housing memory or peripheral interface modules)

*This unit houses an LSI-11/2 CPU module in our 8032 CONCEPT system.

Please contact us for additional information

Dept. PT71, 11 Maryknoll Drive • Lockport, Illinois 60441 • (815) 838 0005 7950 Dublin Boulevard, Suite 102 • Dublin, California 94566 • (415) 829 9020 6 Chemin de Tavernay • 1218 Geneva, Switzerland • (022) 98 44 45

Circle No. 34 on Reader Service Card

THE PRICE IS LIGHT.

Scanning monochromator for \$645.

You don't have to spend \$1,500 or more to display optical spectra. Just hook up our \$499 scanning monochromator to any oscilloscope, add our silicon photodetector, and you're ready to display spectra from any source in the range 300-1100nm with ±4nm accuracy.

Available accessories include wavelength marker, light source, sample and hold unit, liquid sample cell, and chart recorder interface.

Call today for literature. At Rofin, we want everyone to see the light.

Rofin Inc., Echo Bridge Office Park, 381 Elliot Street, Newton Upper Falls, MA 02164 — Telephone (617) 527-4884 — Telex 92240

Circle No. 35 on Reader Service Card

cal Union, Warsaw, 1980. E. M. Gaposchkin, B. Kotaczek, eds. 396 pp. Reidel, Dordrecht, The Netherlands, 1981. \$49.95

Cosmic Plasma. H. Alfven. 164 pp. Reidel, Dordrecht, The Netherlands, 1981. \$39.50

Computational Spherical Astronomy, L. G. Taff. 233 pp. Wiley, New York, 1981, \$28.95

Particles, Nuclei and High-Energy Physics

The Nuclear Many-Body Problem. P. Ring, P. Schuck. 716 pp. Springer, New York, 1981. \$46.00

Geometrical and Topological Methods in Gauge Theories. Proceedings, Montreal, 1979. J. P. Harnad, S. Shnider, eds. 154 pp. Springer, New York, 1981. \$14.00

From Collective States to Quarks in Nuclei. Proceedings, Bologna, 1980. H. Arenhövel, A. M. Sarius, eds. 413 pp. Springer, New York, 1981. \$27.70

Proceedings of the 1980 Guangzhou Conference on Theoretical Particle Physics. Vols. I and II. Science, Beijing, China, 1980 (U. S. dist: Van Nostrand Reingold, New York). \$89.50

The New Aspects of Subnuclear Physics. A. Zichichi, ed. 805 pp. Plenum, New York, 1981. \$75.00

Progress in Particle and Nuclear Physics, Vol. 6. Proceedings of the International School of Nuclear Physics, Erice, 1980. D. Wilkinson, ed. 349 pp. Pergamon, New York, 1981. \$81.00

Developments in the Quark Theory of Hadrons: A Reprint Collection, Vol. I: 1964-1978, D. B. Lichtenberg, S. P. Rosen, eds. 508 pp. Hadronic, Nonantum, Mass., 1981. price not stated

Atomic, Molecular and Chemical Physics

Photoselective Chemistry, Parts 1 and 2. J. Jortner, R. D. Levine, S. A. Rice, eds. 769 pp., 718 pp. Wiley, New York, 1981. \$80.00, \$70.00

Elements of Quantum Chemistry. R. Zahradnik, R. Polak. 462 pp. Plenum, New York, 1981. \$39.50

Advances in Chemical Physics. Vol. XLVIII. I. Prigogine, S. A. Rice, eds. 549 pp. Wiley, New York, 1981. \$65.00

History, Philosophy, Society and Government

Matter and Spirit. W. R. Clayton. 131 pp. Philosophical Library, New York, 1981. \$8.75

Scientific Relevance and the Rehabilitation of the Goal Concept. J. S. Pot. 351 pp. Stabo, Groningen, Holland, 1981. \$22.50

2081: A Hopeful View of the Human Future. G. K. O'Neill. 284 pp. Simon & Schuster, New York, 1981. \$13.95

The Origins of Cauchy's Rigorous Calculus. J. V. Grabiner. 252 pp. MIT P., Cambridge, Mass., 1981. \$25.00

Conceptions of Ether: Studies in the History of Ether Theories 1740–1900. N. Cantor, M. J. S. Hodge, eds. 351 pp. Cambridge

U. P., New York, 1981. \$55.00

Skywatchers of Ancient Mexico. A. F. Aveni. 355 pp. U. Texas P., Austin, 1980. \$30.00

Astronomy of the Ancients. K. Brecher, M. Feirtag, eds. 206 pp. MIT P., Cambridge, Mass., 1981. \$7.95

Experimenting with Truth: The Fusion of Religion with Technology, Needed for Humanity's Survival. R. Roy. 200 pp. Pergamon, New York, 1981. \$14.50

The Analytic Spirit: Essays in the History of Science. H. Woolf, ed. 363 pp. Cornell U. P., Ithica, N. Y., 1981. \$25.00

The Impact of Modern Scientific Ideas on Society: In Commemoration of Einstein. C. M. Kinnon, A. N. Kholodilin, J. G. Richardson, eds. 203 pp. Reidel, Dordrecht, The Netherlands, 1981. \$50.00

Optics and Acoustics

Inverse Scattering Problems in Optics. H. P. Baltes, ed. 313 pp. Springer, New York, 1981. \$42.00

Underwater Acoustics and Signal Processing. Proceedings of a NATO Advanced Study Institute, Kollekolle, 1980. L. Bjorno, ed. 736 pp. D. Reidel, Dordrecht, The Netherlands, 1981. \$165.00

Elements of Acoustics. S. Temkin. 515 pp. Wiley, New York, 1981. \$27.95

Materials Science and Condensed Matter

Laser Spectroscopy of Solids, Vol. 49. W. M. Yen, P. M. Selzer, eds. 310 pp. Springer, New York, 1981. \$58.80

Amorphous Solids, Low-Temperature Properties. W. A. Phillips, ed. 160 pp. Springer, New York, 1981. \$32.00

Student Texts and Popularizations

It's All Relative: Einstein's Theory of Relativity. N. H. Apfel. 141 pp. Lothrop, Lee, & Shepard, New York, 1981. \$8.95

Introduction to Pascal for Scientists. J. W. Cooper. 260 pp. Wiley, New York, 1981. \$19.95

Paranormal Borderlands of Science, K. Frazier, ed. 469 pp. Prometheus, New York, 1981. \$12.95

Cosmology: The Science of the Universe. E. R. Harrison. 430 pp. Cambridge U. P., New York, 1981. \$24.95

Solid-State Physics and Electronics

Fundamental Physics of Amorphous Semiconductors. F. Yonezawa. 181 pp. Springer, New York, 1981. \$29.50

Electron Correlation and Magnetism in Narrow-Band Systems. Proceedings of the 3rd Taniguchi International Symposium, Mount Fuji, 1980. T. Moriya, ed. 257 pp. Springer, New York, 1981. \$34.50

Imperfections and Impurities in Semiconductor Silicon. K. V. Ravi. 379 pp. Wiley, New York, 1981. \$39.50 Silicon Integrated Circuits, Part B. D. Kahng, ed. 297 pp. Academic, New York, 1981. \$39.00

Modern Crystallography I: Symmetry of Crystals, Methods of Structural Crystallography. B. K. Vainshtein. 399 pp. Springer, New York, 1981. \$47.50

Instrumentation and Techniques

Coherent Raman Spectroscopy. G. L. Eesley. 142 pp. Pergamon, New York, 1981. \$40.00

Analysis of Thermally Stimulated Processes, R. Chen, Y. Kirsh. 361 pp. Perga-

mon, New York, 1981. \$60.00

Optical Fiber Technology, Vol. II. C. K. Kao, ed. 343 pp. IEEE, New York, 1981. \$29.95

Optical Fiber Systems and Their Components: An Introduction. A. B. Sharma, S. J. Halme, M. M. Butusov. 246 pp. Springer, New York, 1981. \$38.35

Optical Fiber Transmission Systems. S. D. Personick. 179 pp. Plenum, New York, 1981. \$25.00

Flow Injection Analysis. J. Ruzicka, E. H. Hansen. 207 pp. Wiley, New York, 1981. \$32.50

For processes where a chemical standard is anything but.

Our story applies either to developing a profitable new compound or to making sure it's the one you—or your customer—ordered.

You know X-ray diffraction—it's the technique of choice for many critical analyses of catalysts.

What you may not know is our version—the Philips 3800 Automatic X-ray Powder Diffractometer.

What you may not know is our version—the Phillips 3600 Automatic X-ray Powder Diffractometer.

Our hardware is good—even outstanding—and reliable to the point of boredom.

But what makes our 3600 really sing is its computer-based calculations that eliminate time and error. Take the inexact science of catalysts, for example.

We can help you check an incoming catalyst—without fuss—in about three minutes.

Our systems are also at work right now in the development of more efficient catalysts—

e.g. determining particle size, catalytic activity, precise characteristics for end-point control. (This last feature is good for when you finally get a winner and you want to go to the Patent Office with accurate d-spacings.) Finally, the whole system is designed to help you keep your hard-won knowledge to yourself.

Moreover, our computer programs will clean up a complex scan—quantitatively and qualitatively—before your eyes—within minutes.

You get nothing but good, hard, precise information.

And it doesn't take a genius to run it

For above-standard information on technical matters concerning the 3600, please talk to one of our resident experts. Philips Electronic Instruments

85 McKee Drive, Mahwah, N. J. 07430
(201) 529-3800
A North American Philips Company.

Sample courtesy of Linde Division, Union Carbide V Zeolite (LZ-V50) Precise control of costly processes saves money therefore, petrochemicals and catalysts must be as close to working standards as possible—in fact, sometimes identical. Think of the Philips 3600 APD as a very fast and accurate lingerprint machine. Use it to develop your own unique "print" or standard, and then store it in your APD computer memory.

X-ray, the Philips way —may be your way.

PHILIPS