
Three reasons why SuperVaritemp is the best cryostat from 1.5 K to room T.

- 1. No ΔT between sample and holder.
- 2. Helium consumption is 4x less and refrigeration capacity is 4x greater than any continuous flow system.
- 3. Two experimental chambers—one in helium vapor and one in vacuum.

RESEARCH COMPANY, INC. 22 Spencer Street, Stoneham, MA 02180 (617) 438-3220

Circle No. 35 on Reader Service Card

ENERGY PULSER Dependable, precise control for excitation of exploding wires, spark gaps, electronic fuses, flash bombs, explosive shutters, fuels, and high energy discharge are just several of the applications for this work horse of the industry Features: • 100 Joule Output - 2,000 to 5,000 volt peak with 4% meter accuracy · Capacitance - 1 or 8 microfarads · Pushbutton or external voltage triggering with +25 to +100 volt pulse Output Connector Reynolds 167-2827 Fast Pulse Rise Time - 2 microseconds 6 Channel output also available (619A) Model 619 High Energy Pulser 2230 South 3270 West/Salt Lake City, Utah 84119 (801) 972-5272

Circle No. 36 on Reader Service Card

one of the disciples of that school, made his first written communication of his and Francis Crick's discovery of the DNA double helix in 1953 in a letter to Delbrück. In recognition of their central role in transforming the landscape of classical Mendelian genetics into the molecular Crick-Watsonian scene, Delbrück, Luria and Hershey shared the 1969 Nobel Prize for Physiology or Medicine.

In the last few years before his retirement from active teaching at Caltech. Delbrück taught an annual course on the philosophy of science. In this course, Delbrück developed further the epistemological ideas embodied in Bohr's "Copenhagen spirit," particularly those most profound questions about the relation of human rationality to reality. In retrospect it seems that Delbrück's greatest contribution was to have been a kind of Gandhi of biology who, without possessing any temporal power at all, was an ever-present and sometimes irksome spiritual force. "What will Max think of it?" was the central question for the molecular biological psyche.

> GUNTHER S. STENT University of California Berkelev

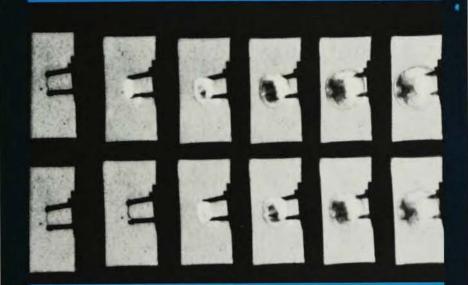
Luise Meyer-Schützmeister

Luise Meyer-Schützmeister, senior physicist in the Physics Division of Argonne National Laboratory, died after a brief illness, on 19 January 1981. She had been active in experimental research in nuclear physics, particularly in the investigation of giant resonances.

Meyer-Schützmeister was born in Magdeburg, Germany. She did her undergraduate work in Berlin, started her graduate studies with Walter Gerlach at the University of Munich, later moved to the Technical University of Berlin, where she received her PhD in 1943 for work under Hans Geiger. After the war she worked briefly at the University of Göttingen before taking charge of the Radioisotope Laboratory of the new Max Planck Institute for Medical Research. This laboratory, which she organized, became the distribution center for radioisotopes for medical and industrial use in Germany.

In 1952 Meyer-Schützmeister and her husband, physicist Peter Meyer, emigrated to the United States. At the Institute for Nuclear Studies at the University of Chicago she worked with Valentin L. Telegdi on photonuclear measurements at the betatron. In 1956 she joined the Physics Division at Argonne National Laboratory. There she remained for the rest of her career.

At Argonne she collaborated with Stanley S. Hanna. In one of their early experiments they developed an ingenious technique that used the recoil in nuclear reactions for resonance fluorescence measurements. A later investigation (with Hanna and Ralph E. Segel), one of the first of the detailed structure in the giant dipole resonance, used the beam from a tandem accelerator with the (p,γ) reaction and large NaI detectors. Her work also contributed evidence for coherent effects in the giant resonance, for intermediate structure, for coherent interference effects between E1 and E2 giant resonances and for isospin mixing in the E1 resonance. During this period she and her collaborators provided the first confirmation of Rudolf Mössbauer's discovery of recoilless emission and absorption of nuclear gamma rays.


In the 1970s, her interest shifted somewhat and she began an investigation of the use of two-nucleon transfer reactions and their isospin dependence for nuclear structure investigations, while she continued with Segel to study giant resonances through (p, γ) and (α, γ) reactions. She and her coworkers did careful studies of the A = 43, 45 and 47 nuclei, combining two-nucleon transfer measurements with a number of other techniques. They produced some of the most complete examples of Coulomb energy systematics with an isospin multiplet.

Meyer-Schützmeister also contributed to measurements ranging from Mössbauer studies to experiments at Los Alamos on nuclear gamma rays produced by pions, to measurements of nuclear cross sections at very low energies, useful in astrophysics and for advanced fusion devices. In addition to her interests in physics, she was an accomplished pianist and enthusiastic in her pursuit of outdoor activities such as hiking, skiing and cycling.

JOHN P. SCHIFFER

Argonne National Laboratory

How fast

Exploding bridge wire

The above picture used a shutter speed of 40 nanoseconds. Not only that, but the autowinder was run at a 5 million picture per second rate. Some mechanism!

The Imacon 790 image converter camera system is obviously not a mechanical or even an electro-mechanical camera. It's an electro-optic system using state-of-the-art electronic imaging techniques combined with advanced electronics to control exposure, frame rate, etc.

Along with the sophisticated electro-optics, a wide range of

front end optics and other accessories make the Imacon 790 the system for high speed photography.

For more information on Hadland's Imacon 790the image converter camera system — contact

marco scientific

1031H E. Duane Avenue Sunnyvale, California 94086 Telephone (408) 739-9418 - Telex 357454