

Circle No. 61 on Reader Service Card

quantitative vacuum measurements

with Datametrics Electronic

Manometer and Barocel Sensor.

In the range of 10⁻⁵ to 5000 Torr. with 10 to 100 times better accuracy than McLeod, Ionization or Thermal Conductivity Gages. —

And calibration accuracy independent of gas composition.

Applications include measurements of vapor pressure, cryogenic temperature, flow, surface area and adsorption, mass spectroscopy, fluid mechanics, leak testing, gas kinetics, freeze drying, vacuum metallurgy, and sputtering.

Datametrics offers a broad line of vacuum and pressure measurement systems for critical applications.

- ▶ Continuous direct reading.
- ▶ High level dc output signal.
- ► Sensors bakeable to 450°C.
- ▶ Digital outputs.
- ▶ Multi-Station inputs.
- ► Compatible with UF₆, HF, F₂

For further information, contact,

Datametrics, Inc.

340 Fordham Road, Wilmington, Mass. 01887 Phone 617-658-5410 • TWX-710-347-7672

Circle No. 62 on Reader Service Card

letters

The various quantities are: m_e (the electron rest mass) = 10^{-27} gm, $\hbar=10^{-27}$ erg sec (Planck's constant), $\alpha_E=$ electromagnetic fine structure constant = $^{1}\!\!/_{137}$, $\alpha_S=$ Pion-nucleon strong coupling constant = 14, $G_N=$ Newton's gravitational constant = 6.7×10^{-8} cgs units, $G_F=$ Universal Fermi weak interaction constant = 1.5×10^{-49} erg cm³. M thus turns out to be a gram! We note that the expression for M does not involve any arbitrary numerical factors or factors of π . The dimensionless constants α_E and α_S occur in their lowest power. The proton being subject to decay, the electron rest mass is more appropriate. Thus the equation is a simplest possible combination.

It is also clear that no matter what units are chosen for the dimensional constants (like G_N , m_e , G_F) M will always have the magnitude of a one gram mass. It therefore appears that there is some justification for recommending the gram as a fundamental

unit of mass!

1/26/81

C. SIVARAM Indian Institute of Science Bangalore, India

Physicist productivity

I read with a certain degree of amusement the comments concerning the longevity parameter W/H^2 and most recently the oblate spheroidal condition given by G^2/H (December, page 72) and their relation to the life expectancies of physicists.

We have never measured physicists by how long they live, but by what they produce, and a relation between productivity and the above parameters might be interesting. A good physique is the result of physical activity and good physics is the product of mental activity, and for a physicist there must be some correlation between mental and physical activity. Thus if we set $\Delta H \simeq 0$, that is, all physicists are of the same height, then

 $W \propto G^2 \propto (BS)^2 \propto 1/P$

where BS is belt size and P is the productivity.

S. I. SALEM California State University

1/22/81 California State University
Long Beach, California

Physics and geometry

The relationship between physics and geometry, discussed in the letter of Robert Hermann in November (page 11) and the article of C. N. Yang in June (page 42), is interestingly illuminated by considering the article on

In the laboratory or classroom...

materials and methods from **North** Holland

Operator Methods in Quantum Mechanics

Martin Schechter, Yeshiva University An introduction to the latest techniques of quantum mechanics and important applications of quantum theory for physicists, materials scientists, mathematicians and students. Focusing throughout on the one-dimensional quantum mechanics scattering theory, the book deals with methods rather than details, and develops mathematical techniques for precise, logical solutions. Included are lucid treatments of the invariance principle, trace class operators, linear product spaces, and other topics that explore the crucial interaction between mathematics

1981 448 pages \$32.50 0-444-00410-6

Principles of Superconductive Devices and Circuits Theodore Van Duzer, University of California, Berkeley, and

Charles W. Turner, King's College, London University, England

The commercial and high-power applications of superconductivity are explored in this text and reference for the student, materials scientist, and the engineer interested in self-study. Van Duzer and Turner introduce the essential principles and applications of superconductivity, including electron-pairing theory, weak-field electrodynamics equations, and theories used in high magnetic field applications. Plus — key formulas, constants, data, exercises and problems. 1981 320 pages \$32.50 0-444-00411-4 Available outside the U.S. and Canada from Edward Arnold, Ltd. (Publishers), London, U.K.

Ternary Superconductors G.K. Shenoy, B.D. Dunlap and

F.Y. Fradin, Argonne National Laboratory. Argonne, Illinois, editors

Proceedings of the International Conference on Ternary Superconductors held September 24-26, 1980, Lake Geneva, Wisconsin

The dramatic, recent investigations on the superconducting properties of ternary compounds are explored in this up-to-date, authoritative volume. A host of leading scientists discuss topics that include: High T_c and high critical field materials; the interaction between magnetism and superconducti-vity; flux pinning; critical currents; and the fabrication of films and wires. This is an essential, practical work for all chemists, materials scientists, crystallographers and solid-state physicists in this important field.

1981 341 pages \$49.50 0-444-00626-5

Introducing. . . **Materials Research** Society Proceedings Volumes 1-3

Volume 1: Laser and Electron-Beam Solid Interactions and Materials Processing

J.F. Gibbons, Stanford Electronics Laboratory, Stanford University, California,

L.D. Hess, Hughes Research Laboratories. Malibu, California, and T.W. Sigmon,

Stanford Electronics Laboratory, University, California, editors Proceedings of the symposium on Laser and Electron-Beam Solid Interactions and Materials Processing, Boston, Massachusetts, November 16-20, 1980

Documents advances in evaluating basic aspects of beam processing phenomena as well as applications of laser and electron beam processing methods to the production of improved materials, devices and small scale integrated circuits. Covers the tremendous progress in the study of the use of laser and electron beams to anneal ion implantation damage in semiconductors; to transform amorphous layers into single crystal material; to dissolve precipitates, dislocation loops and other defects in crystals diffused with dopants; to promote grain growth of polycrystalline materials, and to produce diffusion of dopants into underlying substrates from thin layers of dopant material deposited on the

1981 656 pages \$70.00 0-444-00595-1

Volume 2: Defects in Semiconductors

J. Narayan, Solid State Division, Oak Ridge National Laboratory, Tennessee, and

T.Y. Tan, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, editors Proceedings of the symposium on Defects in Semiconductors, Boston Massachusetts, November 16-20, 1980.

Explores advances in defect characterization techniques, and then focuses on point defects, dislocations, and point defect-dislocation interrelationships in elemental and compound semiconductors. Properties of these defects are discussed in light of various physical phenomena including nuc-leation and formation of macroscopic defects, thermal diffusion and oxidation, crystal growth, and conventional thermal and laser annealing of ion implantation and neutron damage. 1981 552 pages

\$65.00 0-444-00596-X

Circle No. 63 on Reader Service Card

Volume 3: Nuclear and Electron Resonance Spectroscopies Applied to Materials Science

E.N. Kaufmann, Bell Laboratories,

G.K. Shenoy, Argonne National Laboratories, Argonne, Illinois, editors Proceedings of the symposium on Nuclear and Electron Resonance Spectroscopies Applied to Materials Science, Boston, Massachusetts, November 16 - 20, 1980

Covers the complete range of capabilities of the diagnostic powers of resonance methods from several points of view. Valuable in interdisciplinary materials research programs and of interest to chemists, physicists, ceramists, materials scientists and research managers concerned with glasses, amorphous metals, radiation damage, defects and gases in materials, ion implantation, coal, hydrides semiconductors, superconductors superionic conductors, anisotropic conductors, catalysts, and alloys 1981 552 pages \$65.00 0-444-00597-8

For easy ordering, clip and mail this coupon

Please send me:

copies Operator Methods in Quantum Mechanics, Schechter Cloth \$32.50

copies Principles of Superconductive Devices and Circuits, Van Duzer/Turner Cloth \$32.50*

copies **Ternary Superconductors**, Shenoy/Dunlap/Fradin Cloth \$49.50

Materials Research Society Proceedings

copies Volume 1: Laser and Electron-Beam Solid interactions and Materials Processing, Gibbons/Hess/Sigmon \$70.00

copies Volume 2: Defects in Semiconductors, Narayan/Tan \$65.00

copies Volume 3: Nuclear and Electron Resonance Spectroscopies Applied to Materials Science, Kaulmann/Shenoy Cloth \$65.00

Three easy ways to pay

Check enclosed (Publisher pays postage and handling.)

2 Charge to my credit card:
American Express ____ Master Card
VISA Issuing Bank # (MC only)

Account#

Valid through

Signature

Bill me for the net cost plus postage and handling.

Address

City

Book prices subject to change without notice. In the U.S.A. and Canada, order from

Linda Leopold, Marketing Manager

Elsevier North Holland, Inc.

52 Vanderbill Avenue New York, N.Y. 10017

Outside North America, order from:

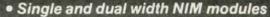
Elsevier Science Publishers P.O. Box 211, Amsterdam The Netherlands

(Note: Prices higher outside the U.S. and Canada) *Available outside the U.S. and Canada from Edward Arnold, Ltd. (Publishers), London, U.K.

PROGRAMMABLE MICROPROCESSOR DIGITAL TEMPERATURE CONTROLLER

MODEL 3100

- Fully programmable via front panel data/mode keyboards and an associated alphanumeric readout
- Remote control capability via an external CRT display and standard ASCII keyboard
- 4-digit readout process temperature
- ± 0.2K accuracy from 2 to 35K
- ± 0.5K accuracy from 35 to 300K



1101 25th Street West Palm Beach, FL 33407 Telephone (305) 659-5885 Telex 51-3474 Send for New Catalog of Sensors, Readouts and Controllers

Circle No. 64 on Reader Service Card

Nuclear Instrumentation

High Voltage *NIM* Power Supply Modules

- AC or DC input
- High Stability, low noise
- Reversible polarity
- Remote program or shut-down
- * Short circuit and arc protected

The SERIES NIM is a family of high performance high voltage power supplies for use in standard ERDA NIM bins. Units are available to provide output voltages variable up to 10000V. Features include front panel voltage metering, line and load regulation of 0.001% and ripple of 0.0001%. Send for full specifications and for our catalog describing the most complete line of precision high voltage instruments and modules to

Model 342

BA BERTAN ASSOCIATES, Inc.

3 Aerial Way, Syosset, New York 11791 • (516) 433-3110

Circle No. 65 on Reader Service Card

letters

neutron interferometry by Samuel A. Werner in December (page 24).

Werner describes an experimental test, proposed by Asher Peres, to determine whether quaternionic structures should be used in quantum field theories. Stephen Adler has used quaternionic structures to describe the strong-color, weak and electromagnetic fields.²

Feza Gursey, M. A. Jafarizadeh and H. C. Tze have used quaternionic structures to describe the gravitational field.³

The physics of Adler and Gursey and his collaborators is directly related to the mathematics of J. A. Wolf⁴, in which Wolf shows that the only 4-dimensional complete simply connected Riemannian symmetric spaces with quaternionic structures are precisely the three used by Adler to describe the electromagnetic, weak and strong-color fields, plus the one used by Gursey to describe the gravitational field.⁵

Wolf's geometry may give rise to physical theory explaining why our world has four kinds of fields. That physical theory may be given a critical test by the neutron interferometry experiment described by Werner.

This letter does not atempt to list all work in quaternionic field theory, but it is interesting to note that one of the early figures in the area is C. N. Yang.⁶

References

- 1. A. Peres, Phys. Rev. Lett. 42 (1979) 683.
- 2. S. L. Adler, Phys. Rev. D 21 (1980) 2930.
- F. Gursey, M. A. Jafarizadeh, and H. C. Tze, Phys. Lett. 88B (1979) 282.
- J. A. Wolf, J. Math. Mech. 14 (1965) 1033-1047.
- 5. With compact spaces identified with their non-compact dual spaces, there are precisely 4 such spaces: Euclidean 4-space, which has Abelian structure; SU-(2)/S(U(1) \times U(1)) \times SU(2)/S(U(1) \times U(1)), the bicylinder; SU(3)/S(U(2) \times U(1)), the hypersphere; and Sp(2)/S (1) \times Sp(1), the 4-sphere.
- D. Finkelstein, J. M. Jauch, S. Schiminovich, and D. Speiser, J. Math. Phys. 3 (1962) 207.

FRANK D. SMITH JR. Cartersville, Georgia

1/26/81

99/19/2014

Correction

March 1981, page 9—Inadvertently a number of editorial changes failed to appear in the Guest Comment "Physics—used and unused" by Lewis M. Branscomb. Fully corrected reprints are available from Physics Today or from L. M. Branscomb, IBM Corp., Armonk, New York 19504.