
news
Period-doubling route to chaos shows universality
In some systems, as an external para-
meter is varied, the behavior of the
system changes from simple to erratic.
For some range of the parameter, the
behavior of the system is orderly; for
example, it is periodic in time with a
period, T. Beyond this range, the be-
havior does not reproduce itself in T
seconds. Instead, two intervals of T
are required. In order words, the peri-
od doubles to 27". This new periodicity
remains over some range of parameter
values until another critical value is
reached; now a period of 4T is required
for reproduction. At a certain value of
the parameter, an infinite number of
doublings has been reached and the
behavior has become aperiodic or cha-
otic. Thus period doubling is a charac-
teristic route for certain systems to
follow as they change from simple peri-
odic to complex aperiodic motion.

Surprisingly, this mathematical
curiosity of period doubling turns out to
occur in many real physical systems.
Among the systems now believed to
show period-doubling behavior are
some biological populations and a large
variety of noisy mechanical, electrical
and chemical oscillators, which are ex-
amples of coupled sets of nonlinear
differential equations. An experiment
on Rayleigh-Benard flow shows evi-
dence for periods geometrically in-
creasing up to a factor of 16. Very
recently suggestions of period-doubling
behavior have been reported for noisy
Josephson junctions and for optically
bistable cavities. All these period-dou-
bling systems are believed to have uni-
versal behavior, analogous to the well-
developed theory of critical phenom-
ena.

History. In 1973 Nicholas Metropolis,
Myron Stein and Paul Stein (Los Ala-
mos) discovered a qualitative universal
behavior in period-doubling one-dimen-
sional maps or iterative schemes. In
connection with population biology
studies, Robert May (Princeton) and
George Oster (Berkeley) noted in 1974
that period doubling can lead to chaos.
The following year Mitchell Feigen-
baum (Los Alamos) became interested
in period doubling after hearing a talk
by Steven Smale (Berkeley), who con-
sidered a connection between an infi-
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Experimental observation of period-doubting behavior leading to turbulence in Rayleigh-
Benard flow. Libchaber and Maurer found frequencies fu f,/2, f-,/4, V 8 a n d V16. The set of
subharmonic spectral peaks that have appeared at the /7th period doubling are so labeled. Using
the n = 2 peaks the theoretically predicted averages for the n = 3 and 4 peaks are drawn as
horizontal lines. The two lines are 8.2 db apart. Figure adapted from references 3 and 4.

nite number of period doublings and a
strange attractor. A strange attractor
is a region of phase space that a system
point's trajectory must enter. On its
very complicated, multiply connected
spongelike surface, nearby trajectories
diverge from each other. David Ruelle
(Institut des Hautes Etudes Scientifi-
ques) and Floris Takens had suggested
that these strange attractors might
describe chaos.

Feigenbaum started studying one-
dimensional maps, changing x, to x} + j
by a quadratic transformation

xj + 1 = Axj (1 — Xj)

with a fixed value of the external pa-
rameter A. Using a programmable
pocket calculator, Feigenbaum numeri-
cally determined some parameter val-
ues at which period doubling occurs
and immediately saw that the values of

An were converging geometrically. (For
k greater than An but less than An + 1,
there is a stable period of frequency
2 ".) Feigenbaum believes he was the
first to find this geometric convergence
because previous calculations of An had
always been performed automatically
on large, fast computers. He found the
convergence rate was 4.669. Then, in-
stead of a quadratic transformation, he
tried a trigonometric transformation,
and to his surprise the An again con-
verged geometrically at the same
rate—4.669. Thus, he concluded that
for one-dimensional transformations,
as you change the parameter A, if you
take the ratio of two successive para-
meter changes, the ratio approaches a
universal value, <5. That is,

5 = 4.6692016.
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in the limit as the number of doublings
approaches infinity.

Feigenbaum soon found another uni-
versal property. Each time the period
doubles, some features take twice as
many steps, In. So if you only went n
steps, you would have an error. The
ratio of successive errors in the limit of
large n (in other words, a fundamental
rescaling) is a universal constant,
2.502907875.... Using these ingredi-
ents, Feigenbaum developed a detailed
theory of these universal phenomena
that includes a description of the dyna-
mics. He reported these results at a
number of meetings in 1976 and 1977
and then in the Journal of Statistical
Physics in 1978.'

Feigenbaum told us the value for 8
appears as a natural rate in all systems
exhibiting a period-doubling route to
chaos. "In fact," he says, "most mea-
surable properties of any such system
in this aperiodic limit now can be deter-
mined in a way that essentially by-
passes the details of the equations gov-
erning each specific system because the
theory of this behavior is universal
over such details." Provided the sys-
tem has the qualitative properties al-
lowing it to take this route to chaos, its
quantitative properties are deter-
mined. He notes that the result is
analogous to the modern theory of criti-
cal phenomena, where a few qualita-
tive properties of the system determine
universal critical exponents. Both are
fixed-point theories, and the number 8,
he says, can be viewed as a critical
exponent.

In 1979, at the suggestion of Pierre
Collet (Ecole Polytechnique) and Jean-
Pierre Eckmann (University of Gene-
va) that coupled differential equations
with period doublings might show the
same universal metric properties,
Valter Franceschini and his collabora-
tors at the University of Modena, Italy,
did numerical studies that verified this
hypothesis, for example, in two differ-
ent truncations of the Navier-Stokes
equation. In other words, they found
that some continuous systems with
many degrees of freedom behaved the
same as one-dimensional systems.

Feigenbaum's theory has been cast in
a more rigorous and abstract math-
ematical form by Collet, Eckmann2 and
Oscar Lanford (Berkeley). Essentially
complete proof of Feigenbaum's result
under certain assumptions was given
recently by Lanford and also by Cam-
panino (University of Rome), Henry
Epstein (Institut des Hautes Etudes
Scientifiques) and Ruelle.

Experiments. Last year Albert
Libchaber and J. Maurer (Ecole Nor-
male Superieure) did Rayleigh-Benard
experiments3 in liquid helium con-
tained in a brick-shaped cell that was
heated from below. As they increased
the temperature difference between

the top and bottom of the fluid, a
bifurcation or change in period oc-
curred. Libchaber and Maurer studied
the state where two convective rolls are
formed. A second bifurcation leads to
an oscillatory instability. As the tem-
perature difference was increased, the
Fourier analysis of the temperature at
one point in the fluid showed a se-
quence of subharmonic bifurcations (in
which the frequency is halved) until
the system reached turbulence. The
experiment showed 2T, 4T, 8T and
16 T. With each bifurcation the inter-
val in Rayleigh number became small-
er so that by 32 T, Libchaber and
Maurer were not able to distinguish the
bifurcations experimentally.

When Feigenbaum learned of the
Libchaber-Maurer experiment, he
used part of their observed spectrum to
compute4 the rest of the spectrum.
There are no free parameters in the
calculation. Theory and experiment
agreed to two significant figures. Ex-
periments by Jerry Gollub, Steven Ben-
son and Jethro Steinman (all then at
Haverford College) also sometimes re-
vealed5 up to two period-doubling bifur-
cations. Feigenbaum has shown that
in a period-doubling transition, the new
peaks will be lower than the old ones by
8.2 db in intensity. This prediction is
consistent with the Haverford experi-
ment.

Very recently Michael Nauenberg
and Joseph Rudnick (University of
California, Santa Cruz) have developed
a theory for predicting the height of the
spectral peaks, too. Bernardo Huber-
man (Xerox Palo Alto Research Center)
and Albert Zisook (University of Chica-
go) and Doyne Farmer (Santa Cruz)
have shown that the integrated noise
power spectrum in the chaotic regime
grows as a power law.

Although the observation of the sub-
harmonic route to chaos in a fluid has
excited many workers, a real fluid can
follow lots of other paths to turbulence,
paths that are not as well understood
theoretically. As Feigenbaum says, if
the system does show period doubling,
you can predict the rate at which it will
do it. But at present there is no way to
tell in advance what system will show
period doubling.

Effects of external noise. Last year
Guenter Ahlers (Santa Barbara) and
Robert Walden (Bell Labs) did some
Rayleigh-Benard experiments that
they suggested were dominated by ex-
ternal stochastic processes. This sug-
gestion has prompted consideration of
the effects of external noise on period-
doubling systems.

James P. Crutchfield (University of
California, Santa Cruz) and Huberman
did numerical experiments on period-
doubling systems when they put in
noise obtained from a random-number
generator.6 In this case they found

that the number of doublings is finite
instead of infinite. So chaotic behavior
occurs earlier when external noise is
present.

The Lyapunov exponent measures
how fast two points in phase space
separate in time. Huberman and Rud-
nick found7 in systems without noise
that the Lyapunov exponent scales uni-
versally near a point of infinite period
doubling. That is, once the system
becomes chaotic, the Lyapunov expo-
nent grows with a power-law depen-
dence, just like an order parameter in a
phase transition.

Very recently three groups have
studied the effects of external noise on
the scaling of the Lyapunov expo-
nents. Boris Shraiman, Eugene
Wayne and Paul Martin (Harvard Uni-
versity) and Crutchfield, Nauenberg
and Rudnick have found theoretically
that in the presence of external noise,
the Lyapunov exponent obeys a univer-
sal scaling law. A third group, Crutch-
field, Farmer and Huberman, also did
numerical experiments that produced
the same results.

Martin told us the new work on noise
clarifies the connection between the
period-doubling route to chaos and the
renormalization-group approach to
phase transitions. In a phase transi-
tion, one varies the temperature to go
from one phase to another. In the
transition from a multiply periodic
phase to a chaotic phase, one changes a
control parameter, such as stress or
Reynolds number. Because extended
scaling laws apply in the period-dou-
bling system, the noise there serves a
role similar to an external magnetic
field in a magnetic phase transition.

Applications. In 1979 Huberman and
Crutchfield suggested that one might
see solid-state turbulence in weakly
pinned charge-density-wave systems
and superionic conductors. Some
groups are looking for evidence of such
turbulence in NbSe3, the fruit fly of
charge-density waves. Huberman,
Crutchfield and Norman Packard (San-
ta Cruz) have considered7 the motion of
a particle in a sinusoidal potential and
found this system has chaotic solutions
that reach chaos by period doublings.
They believe the striking rises in noise
observed in Josephson-junction oscilla-
tors may be due to period-doubling
behavior.

Hyatt Gibbs, Fred Hopf, David
Kaplan and Rick Shoemaker (Universi-
ty of Arizona) told us they have found
evidence8 for period doubling and opti-
cal turbulence in a hybrid optically
bistable device, as predicted by Ken-
suke Ikeda (Kyoto University). The
behavior of this one-dimensional sys-
tem is in substantial agreement with
that predicted by Feigenbaum, accord-
ing to Gibbs.

Poincare found that a Hamiltonian
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system with two degrees of freedom is
related to a transformation that pre-
serves areas in two dimensions. Theo-
rists have recently found that for these
area-preserving systems, period dou-
bling also occurs and universal behav-
ior is found. The hope now is to extend
the theory to Hamiltonians with more
degrees of freedom. —GBL
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Surface EXAFS yields bond sites
Extended x-ray absorption fine struc-
ture (EXAFS), a powerful source of infor-
mation about the immediate environ-
ment of selected atoms in systems
without long-range order, is now being
exploited for the study of surfaces.
Using the high-intensity x-ray beams
produced by synchrotron radiation
from SPEAR, the e+e~ storage ring at
the Stanford Synchrotron Radiation
Laboratory (SSRL), groups from Bell
Labs1 and Stanford2 have recently been
able to determine with high precision
the bond lengths and adsorption sites of
fractional monolayers of atoms ad-
sorbed onto various substrate surfaces.

Such studies are intended to investi-
gate the general nature of surface
chemical bonding. The structural de-
tails of surface adsorption are also of
practical importance for understand-
ing chemical catalysis and surface oxi-
dation. Furthermore, they can eluci-
date what goes on at interfaces in
microelectronic heterostructures. Sur-
face EXAFS (SEXAFS) is at present limited
by signal intensity to the study of
surfaces onto which foreign atoms or
molecules have been adsorbed. But
when higher intensity synchrotron ra-
diation beams become available at dedi-
cated storage rings now under con-

. struction, SEXAFS should be able to
analyze surface structure in homogen-
eous materials.

Low-energy electron diffraction, the
'. present standard technique for the

study of surface structure, suffers from
, a number of limitations. Like Bragg x-

ray diffraction, but unlike EXAFS, it
requires long-range order in the mate-
rial under study. Furthermore, the
interpretation of LEED data is compli-
cated by multiple scattering of the low-

; energy electrons. This requires fitting
' the data to mathematical models, and

it limits the precision of bond length
; determination to about 0.1 A.
''[ EXAFS. In the x-ray absorption spec-
' tra of atoms bonded in solids or mole-
- cules one frequently sees an oscillatory

fine structure extending for several

hundred eV above a particular absorp-
tion edge. R. de L. Kronig suggested a
half century ago that this extended fine
structure might contain information
about the near neighbors of the absorb-
ing atom. It was eventually under-
stood that these EXAFS spectra result
from interference between the photo-
electron wave emerging from the ab-
sorbing atoms and the backscattered
waves from elastic collisions of this
photoelectron with neighboring atoms.

In 1971 Dale Sayers and Edward
Stern (University of Washington), and
Farrel Lytle (Boeing) proposed a meth-
od for determining the distances of
these backscattering neighbors from
the absorbing atom by Fourier analysis
of the EXAFS spectrum (PHYSICS TODAY,
October 1974, page 17). To investigate
the immediate neighborhood of a par-
ticular atomic species in the sample,
one looks at the EXAFS structure just
above a convenient x-ray absorption
edge for that species. The small oscil-
lations in the x-ray absorption cross
section, observed as one increases the
incident energy, go like sin (2kR + 6),
where R is the distance from the ab-
sorbing to the backscattering atom, k is
the photoelectron momentum, and 6 is
a small, energy-dependent phase shift.
Thus if one can correct for the phase
shift, the Fourier transform of the EX-
AFS spectrum will generate a number of
peaks corresponding to the distances of
nearby backscattering atoms. Fur-
thermore, the amplitude of the EXAFS
signal would be a measure of the num-
ber of neighboring atoms contributing
to the backscattering.

With the advent of the intense synch-
rotron x-ray source at SPEAR (1974), and
the demonstration that the phase shifts
one needs to know are insensitive3 to
chemical environment (1976), EXAFS be-
came a very precise tool for measuring
specific bond lengths in bulk systems
without long-range order, and in com-
plex biological molecules. Bond
lengths in such systems could now be
measured to within a few hundredths

of an angstrom. This high precision is
very useful for choosing between alter-
native structural configurations.

Surface EXAFS. Being able to deter-
mine bond lengths with an accuracy
almost an order of magnitude better
than that afforded by LEED, EXAFS be-
comes very attractive for the investiga-
tion of surface structure. But an x-ray
beam passing through even the thin-
nest feasible sample would encounter
105 more atoms in the substrate bulk
than in the surface monolayer of inter-
est. The surface EXAFS signal would
thus be swamped by background from
the substrate in a conventional EXAFS
measurement, where the x-ray absorp-
tion cross section is measured simply
by observing the attenuation of the
beam passing through the sample.

What is needed is a surface-specific
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SEXAFS spectrum for iodine adsorbed on
(111) surface of copper crystal (top), shown
with EXAFS spectrum of bulk Cul. The SEXAFS
data were taken by Bell Labs group with x-ray
beam polarized parallel to surface. Below are
Fourier transforms of these spectra, after
background subtraction. After filtering out high-
frequency components and correcting for
phase shift from bulk data, one gets I-Cu
adsorbate bond length of 2.66 + 0.02 A.
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