letters

5/81

risk is not simply measured by the product of probability times consequences. It is for this reason that I believe the maximum consequences of reactor accident, as well as the risk, must be adequately low. The evidence on iodine release from water reactor accidents suggests that consequences may already be overestimated.

As for Professor Brown's grisly suggestion, I don't understand why he confines his offer to an old nuke like me when proponents of any energy technology (including so-called benign technologies) can, if one applies the logic implied in Professor Brown's suggestion, be held responsible for the many thousands of random deaths each year caused by any technology that transforms energy from one form in another.

ALVIN M. WEINBERG Institute of Energy Analysis Oak Ridge, Tennessee

Relativity and field theory

Jacob Bekenstein's response (January, page 69) to a letter by Michael Brill and Winfield Salisbury shows significant misunderstandings of a theory proposed by me. The purpose of this letter is to clarify the misunderstandings and to point out that not only is the theory in agreement with all known experiments, but it has a compelling simplicity and inner consistency of its own which can compare with those of other existing theories of gravitation.

Consider two rooms, one in free space being pulled with acceleration g, the other resting on the surface of the earth where the gravitational acceleration is g. In the first room a piece of iron and an apple (let go from rest) hit the floor at the same time because the floor is going up toward the iron and the apple. In the second room the same piece of iron and the apple (again let go from rest) hit the floor at the same time because they are moving down with the same acceleration g. In this kinematical sense the new theory works the same way as any other theory of gravity where the equations of motion are independent of mass.

The difference, and in fact part of the motivation, of the new theory comes from the following dynamical question: Will the dents on the floors (caused by the iron) be also exactly the same? To see why the question arises, note that in the first room we would naturally think of the effect as depending only on potentials definable within the room (say, from the floor to a height), whereas, in the second room an overall potential due to the presence of the earth could cause a change in the energy (mass) of the iron. So in the

second room there is the possibility that the mass m might become am. The equations of motion would not be affected (they are independent of mass) but the dents on the floor would be different because now mass is am instead of m. This possibility cannot be removed by appealing to tidal forces and so on, because the two rooms might be sitting on two identical planets one of which has an outer shell (enclosing the room), causing no change in g but contributing additional energy (mass) to the iron. Motions would be identical but energy-momenta could differ because of this extra potential. (Such a difference would also have a detectable quantum mechanical effect since, say, for a neutron, the phase difference between two heights would be $a\delta$ instead of just δ .)

The new theory eliminates such distinctions by formulating the problem of dynamics so that: 1) The metric depends only on potential differences as $g_{\mu\nu}(\dot{\phi} - \dot{\phi}')$; that is, the metric displays a group property with respect to potentials. 2) The tensor potential $\phi = \phi_{\mu}$ is a generalization of the Newtonian potential; it is symmetric and satisfies the covariant d'Alembert equation of the same metric, ϕ' being its integration constants. 3) The group property is assumed multiplicative and the gravitational red-shift $v' = ve^{-(\phi - \phi')}$, where $\phi = -\frac{1}{2}\log(g_{00})$ is used as a correspondence condition. (The redshift was recently tested,1 in this form, to a high accuracy of 2.5×10^{-6} .) These conditions plus the relativistic requirement that all space-time variables must be treated on equal footing determines the form of the metric to be an exponential. (The usual theory satisfies a similar group property but only on g_{00} . One of the field equations, $R_0^0 = 0$, is exactly the general Laplace equation² of $\phi = -\frac{1}{2}\log(g_{00})$ in the static Schwarzchild metric. Note also that in a 1907 article3 Einstein insisted "in all strictness" (his words) on the exponential character of time-dilation, $t'=t\exp(\gamma\xi/c^2)$, where $\gamma\xi/c^2$ is a special case of our $\phi-\phi'$.) The metric

$$g_{\mu\nu} = (\tilde{\eta} e^{2(\phi - 2\tilde{\phi})})_{\mu\nu}$$

where $\tilde{\eta}$ is the Lorentz metric and $\phi = \phi_{\mu}^{\ \mu}$, the trace.⁴ (Note that in first order this exponential gives the linearized Einstein metric.) The static field corresponds to $\tilde{\phi} \to \phi_0^{\ 0} = \phi(x,y,z)$, hence the static line element is

$$ds^{2} = e^{-2\phi}dt^{2} - e^{2\phi}(dx^{2} + dy^{2} + dz^{2})$$

where $\phi = M/r$ is the solution of the Laplace equation of the same line-element. This line-element is known to be in agreement with all experiments having to do with a static field. Likewise when effects having to do with other components are considered (first

Shape Up.

Explore the peaks and valleys of multiparameter data with the Series 88.

- 1-8 parameter acquisition.
- Simultaneous dual parameter, PHA and list mode acquisition.
- 16,384 data channels.
- Jupiter interface for on-linecomputer control.

CANBERRA

Canberra Industries, Inc. 45 Gracey Avenue Meriden, Connecticut 06450 (203) 238-2351

Circle No. 75 on Reader Service Card

AMBIENT housings are available for all manufacturer's 1, 2, 3 inch end-on and 11/8" side-on PMTs. Options include mounting flange, RFI shielding, and customized chains. Built-in amplifier and gating circuits are also available in 2" and larger housings.

COOLED housings for all 2"diameter and smaller PMTs provide 0 to -60°C temperature ranges with a wide range of accessories. Our new water cooled side-window housing is ideal for OEM applications and for GaAs/extended red PMTs.

CONTACT our building experts for all your housing problems. Our proven standard designs are ideal for most applications, however, we welcome your inquiries for special OEM designs.

DETAILED PMT housing and accessory catalogs available from:

NORTH AMERICA

EMI GENCOM INC.

80 EXPRESS STREET, PLAINVIEW, NEW YORK 11803 (516) 433-5900, TWX: 510-221-1889

ELSEWHERE: Electron Tube Div., THORN EMI Ltd.,

BURY STREET, RUISLIP, MIDDLESEX, HA4 7TA ENGLAND

Circle No. 76 on Reader Service Card

THE PRICE IS LIGHT.

Scanning monochromator for \$645.

You don't have to spend \$1,500 or more to display optical spectra. Just hook up our \$645 scanning monochromator to any oscilloscope, add our silicon photodetector, and you're ready to display spectra from any source in the range 300-1100nm with \pm 4nm accuracy.

Available accessories include wavelength marker, light source, sample and hold unit, liquid sample cell, and chart recorder interface.

Call today for literature. At Rofin, we want everyone to see the light.

Rofin Inc., Echo Bridge Office Park, 381 Elliot Street, Newton Upper Falls, MA 02164 — Telephone (617) 527-4884 — Telex 92240

Circle No. 77 on Reader Service Card

letters

and second order in ϕ) the general metric is again found to be in complete agreement with experiments. Only two questions were ever raised about this theory and each is due to a misunderstanding.5 [In the first instance the scalar \u03c4 was taken as the whole gravitational field, whereas, it is only the scalar trace of the more general field $\dot{\phi}$. In the second instance a conjecture made to represent the most general solution of the field equations was assumed to be an essential part of the theory, whereas, it only means that the most general solution of the field equations is not known. The conjecture itself is never proven or disproven because a prescription of how to expand the metric beyond second order (when certain terms do not commute) is missing. But, of course, this is only a mathematical problem which, by the way, the usual theory also has.]

Completion of this theory into a more recognizable framework is very simple. The theory is given by just three equations:

$$R^{\nu}_{\mu} - \frac{1}{2} \delta^{\nu}_{\mu} R = 2(\Box^2 \phi^{\nu}_{\mu} + t^{\nu}_{\mu}) \tag{1}$$

$$\Box^2 \phi^{\nu}_{\mu} = 4\pi \sigma u_{\mu} u^{\nu} \tag{2}$$

$$\frac{du_{\mu}}{ds} = \frac{1}{2} \partial_{\mu} g_{\alpha\beta} u^{\alpha} u^{\beta} \tag{3}$$

Equation 1 is obtained from the metric by computing the Einstein tensor. It is shown that closed forms obtainable from the exponential always lead to this form. As such equation 1 is just another way of writing the exponential. Here □² is the covariant d'Alembertian and the form of t_{μ}^{ν} is exactly that of a standard field stress-energy of ϕ and its trace ϕ . Since such a t_{μ} is interpretable as a field stress-energy, the remaining part, $\Box^2 \phi_{\mu}^{\ \ \nu}$, identifies the matter stress-energy which is equation 2. This equation is as in other field theories of physics where the fields are related to the source. In this case the source is

$$\tau^{\nu}_{\mu} \rightarrow \sigma u_{\mu} u^{\nu}$$

When $\tau_{\mu}^{\nu} = 0$ the field satisfies a d'Alembert equation which is our original assumption. (In the usual theory the right handside of the field equations is everything except the gravitational field stress-energy. In the new theory it is everything including the gravitational field stress-energy. Thus in the new theory the gravitational field stress-energy contributes to spacetime curvatures on equal footing with matter stress-energy.) Equation 3 gives the geodesic equations of motion which depend only on $g_{\mu\nu}$. Thus we can put equation 2 into equation 1 which become our (geometric) field equations. Interestingly, for these equations we already have the solutions we need. Therefore the only thing we have to do is to form the geodesic equations and calculate the motions of particles. It is further found⁶ that one has

$$D_{\nu}t_{\mu}^{\nu} = \sigma \partial_{\mu}g_{\alpha\beta}u^{\alpha}\mu^{\beta}/2$$

which is σ times the right hand side of the geodesic equations. This completes the field-theory interpretation because the equations of motion can now be written,

$$\sigma du_{\mu}/ds = D_{\nu}t_{\mu}^{\ \nu},$$

exactly as in field theory. The whole process is generally covariant because the equations are kept, at every stage, form-invariant, that is, coordinate-in-

dependent.

The net result of this simple theory of gravitation is that the structure of the space-time physics is turned into a standard field theory of spin-2 particles, although in a space curved partly by its own stress-energy. Several of its desirable features are worthy of special notice. We mention below a few that are easily provable on the simple static metric.

- ▶ A particle with zero rest-mass has a unique signal velocity $v = V = v_g = c(x) = ce^{-2\phi}$ for all wave lengths; v, V, v_g being the particle, phase, and group velocities. This allows a unique operational procedure of space-time measurements for both waves and particles.
- ▶ With $\phi \to \phi \phi'$ the metric is scaled but the scaled metric is still a solution of the original field equations. Thus $x \to x'$, where x' is the point of observation, leads to a "local" Lorentz metric $g_{\mu\nu} \to \eta_{\mu\nu}, c(x) \to c$, although the frame is still non-inertial (not freely falling). Thus in this theory the observed value of the velocity of light is always c as in special relativity.
- For a particle with nonzero restmass $v = v_g$, $vV = c^2(x) \rightarrow c^2$, also as in special relativity. This permits a generalization of quantum mechanics of particles from flat to curved spacetimes and thereby allows a detailed analysis of some quantum gravity experiments.
- With gauge $c(x) \rightarrow c$, the t_{μ} turns out to be a true tensor, not eliminable with any coordinate transformation consistent with that gauge, and reduces exactly to the Newtonian field stressenergy of a static gravitational field. In the strong field limit the theory does not possess an event horizon⁴ and does not lead to black-hole behavior as can also be seen from the refractive index analogy $n = e^{2\phi}$. Radially directed light will always escape (redshifted).

It is clear that the theory displays a compelling simplicity and promise and is close to Einstein's original direction of formulating the geometric theory in close correspondence with special relativity. The theory is compatible with a strong principle of equivalence, the wave–particle duality of quantum mechanics ($v=v_g \leftrightarrow$ probability postulate), the symmetry of space–time variables, gauge theory, operational procedure of space–time measurements and a local field-theory interpretation of space–time geometry. Due to these a synthesis of space–time with quantum mechanics seems to be possible. The conventional theory is 65 years old and still it has not yielded to such a synthesis.

References

- R. F. C. Vessot, M. W. Levine, Phys. Rev. Lett. 45, 26, 2082 (1981).
- A. S. Eddington, Theory of Relativity, Cambridge U. P. (1957), p. 94.
- H. M. Schwartz, Am. J. Phys. 45, 899 (1977).
- H. Yilmaz, Hadronic J. 2, 1196 (1979);
 Phys. Rev. 111, 1417 (1958).
- C. M. Will in Experimental Gravitation,
 B. Bertotti, ed. Academic, New York,
 (1974) pp. 44, 10.
- H. Yilmaz Nuovo Cimento Lett. 22, 647 (1978).
- H. Yilmaz Nuovo Cimento Lett. 20, 681 (1977); Hadronic J. 3, 1418 (1980).

Huseyin Yilmaz Hamamatsu TV Hamamatsu City, Japan

6/81

Radio interferometry

Search and Discovery in March (page 21) contains a nice discussion of transcontinental radio interferometry. However, the statement that "No other astronomical technique—existing or proposed—can come within two orders of magnitude of such resolving power" (that is, a fraction of a milli-arcsecond) is not true.

In March 1981, I attended a conference sponsored by the European Southern Observatory on "The Scientific Importance of High Angular Resolution Observations in Optical and Infrared Astronomy." It is clear that the Europeans and, to a lesser extent, the Americans are now achieving high angular resolutions at infrared and optical wavelengths. A 4000-km radio interferometer operating at 1-cm wavelength has the same resolving power as a 400-m optical interferometer at 1 µm wavelength. A French group is currently using a 35-m optical interferometer and has measured double star separations and stellar angular diameters at the 1 milli-arcsecond level. They are now constructing a new interferometer with 10 times this baseline that may produce fringes within a year or two. Various other groups are considering construction of optical interferometers with comparable baselines. There is even a Swedish effort, I

Convert or Repent

Switch to our high performance, single-width 8075 ADC.

The 8075

- Full 8192 channel conversion gain and range
- Synchronized, crystal controlled 100 MHz clock rate
- Stability better than ± 0.009% of full scale/°C
- Pulse pileup rejection input
- Pulse height analysis using either automatic peak detection or delayed triggering
- Analog sampling voltage analysis
- Digital offset in 128 channel increments

CANBERRA

Canberra Industries, Inc. 45 Gracey Avenue Meriden, Connecticut 06450 (203) 238-2351