we hear that

Fisher, Wilson and Kadanoff share Wolf Prize

The 1980 Wolf Prize in physics will be shared by Michael E. Fisher and Kenneth G. Wilson, both of Cornell University, and Leo P. Kadanoff of the University of Chicago. The trio is to be honored at the Knesset (the Israel Parliament) on 18 September for their "pathbreaking developments . . . in the general theory of . . . critical behavior at transitions between the different thermodynamic phases of matter." They were also cited for bringing "to physics a new and elegant methodology... relevant to many important and apparently unrelated problems of quantum physics..." Offered by the Wolf Foundation, the prize includes a \$100 000 cash award and a diploma. Wolf Prizes are distributed annually in the fields of agriculture, mathematics, chemistry, physics and medicine (and occasionally, art) to recognize "outstanding contributions to mankind's welfare.'

Fisher, who is the Horace White Professor of Chemistry, Physics and Mathematics at Cornell, will be cited "for bringing together, and teaching a common language to, chemists and physicists working on diverse problems in phase transitions." After receiving a BSc (1951) and a PhD in physics (1957) from the University of London, he became a lecturer in theoretical physics at King's College. Fisher remained at London until 1966 when he joined the Cornell faculty. He is a past winner of the American Physical Society Langmuir Prize (1971) and the American Association of Physics Teachers Richtmyer Memorial Lecture Award (1973). Besides critical phenomena, Fisher has done work on the theory and practice of electronic analog computing, magnetism, polymer configuration, combinatorial mathematics and the mathematical foundations of statistical mechanics.

Wilson is currently professor of physics at Cornell and a member of the staff of the Laboratory for Atomic and Solid State Physics. The Wolf Foundation physics prize committee notes that Wilson's "work [on phase transitions] has revolutionized the subject." Harvard University awarded him an AB in 1956.

FISHER

WILSON

KADANOFF

Five years later Caltech granted Wilson a PhD in physics. He served as a Ford Foundation fellow at the European Organization for Nuclear Research, Geneva, Switzerland for the period 1962–63. Wilson then came to Cornell and has remained since. He has done extensive research in elementary-particle physics in addition to his work on critical phenomena.

The Foundation terms Kadanoff's work on phase transitions and critical phenomena as "seminal to [its] understanding." Now a professor of physics at Chicago, he received AB (1957), AM (1958) and PhD (physics, 1960) degrees from Harvard. A National Science

Foundation fellow for the year following his doctoral studies, Kadanoff joined the University of Illinois, Urbana in 1961 staying there for 8 years. He spent the period from 1969 to 1978 on the Brown University physics and engineering faculties and then moved on to Chicago. In 1976 Kadanoff won the APS Buckley Prize. In addition to his research on critical phenomena, he has worked on solid state and many-particle theory and has developed urban growth models.

The Wolf Foundation, which is dedicated the worldwide promotion of science and art, was established in 1976 with an endowment of \$10 million.

AAS honors Wild with Hale Prize

J. Paul Wild, chairman of the Commonwealth Scientific and Industrial Research Organization, Sydney, Australia, has been named the second recipient of the American Astronomical Society's George Ellery Hale Prize. It was presented to Wild at the June meeting of the Society at the University of Maryland, during which he presented the Hale Prize Lecture, "A Historical Perspective of Radio Investigation."

According to the AAS, Wild "has long been associated with the fore-front of [solar] radio astronomy." His development of the solar radio-spectrograph led to the first demonstration that solar radio bursts occur when energetic particles, accompanied by shock waves, pulsate outward

through the corona. In the 1960's Wild helped develop the Culgoora Radioheliograph—a 3-km-diameter array of radio receivers that allowed the attainment of higher angular resolution than was previously possible. Lately he has concentrated on the design of advanced air navigation systems (see following story).

Wild received his education at Cambridge University where he earned a BA in 1943 and an MA in 1950. After service as a radar office in the Royal Navy during the Second World War, he joined the CSIRO Division of Radiophysics. Wild rose through the ranks at CSIRO until he became chairman of CSIRO Executive in 1978. The Royal Astronomical Society awarded him its first Herschel Medal in 1974.