Quarks, atoms,
and the 1/N expansion

Problems in quantum chromodynamics that are currently impossible
to solve may have useful approximate solutions when one assumes that quarks
can have a large number, N, of “colors” instead of three.

Edward Witten

Most particle physicists now believe
that protons, neutrons, and other
strongly interacting particles are built
from more basic constituents known as
*quarks” and *“gluons,” which interact
according to the rules of a relativistic
quantum field theory known as “quan-
tum chromodynamics.”

In many ways, this new theory is
very similar to the much older quan-
tum theory of electromagnetism (quan-
tum electrodynamics, or QED). Quan-
tum electrodynamics is the study of
electric charges and the forces between
them. Every electric charge, as we
know from experience in macroscopic
physics, creates an electromagnetic
field which in turn exerts forces on
other charges. Under ordinary condi-

Edward Witten is a Junior Fellow in the depart-
ment of physics at Harvard University

38 PHYSICS TODAY / JULY 1980

tions, these fields and forces are accu-
rately described by Maxwell’s equa-
tions and other macroscopic laws.
However, in the microscopic world,
when effects of quantum mechanics
and relativity are important, an accu-
rate description requires the use of
quantum electrodynamics.

Quarks and gluons

Just as quantum electrodynamics de-
scribes electric charges, so quantum
chromodynamics (QCD) describes the
interactions of particles, quarks and
gluons, that carry a new kind of charge,
the color charge. A rough translation
could be made between the two theories
as follows:

electrons «» quarks
photons « gluons

The quark, like the electron, is a
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point particle with spin 1/2 that satis-
fies a Dirac equation. The electron has
electric charge and, similarly, the
quark carries color charge. (The quark
also carries electric charge, but this is
so much weaker than the color charge
that we can ignore it here.) The pho-
ton is a massless spin-one particle that
transmits electromagnetic forces. The
gluon is a similar spin-one particle that
transmits color forces. Although in
many ways this analogy is quite close,
there are important differences be-
tween the two theories. I will have
more to say about the differences later.

When quantum electrodynamics was
developed, whole new vistas came with-
in the reach of theoretical physics.
Completely new processes, such as elec_-
tron-positron pair creation and annl-
hilation, were predicted and observed.
Calculations of unprecedented accura-
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Observation of baryon charm. This bubble-
chamber photo shows the result of a neutrino-
proton collision that produced a 4~ and a
charmed X_*. The X decayed into a pion and
a charmed A, which in turn decayed into a
proton and four pions. Events such as this
are evidence that quarks come in at least four
“flavors,” as well as three colors.

{Photo from Brookhaven National Laboratory.)

cy became possible, for instance, the
Lamb shift of atomic energy levels and
the radiative corrections to the magnet-
ic moment of the electron. Quantum
electrodynamics is accepted as the cor-
rect description of interacting electric
charges because its many predictions
have been accurately confirmed by ex-
periment.

For quantum chromodynamics the
situation is rather different. Because
of mathematical difficulties, it has
proved very difficult to extract quanti-
tative predictions from this theory. The
quantitative predictions that can be
made (which mainly concern the high-
energy behavior, and are based on the
renormalization group and “‘asymptot-
ic freedom™) are often hard to check
experimentally. Most of the tests of
the theory that have been carried out to
date are semi-quantitative.

In contrast with quantum electrody-
namics, which won acceptance because
of calculations which agreed with ex-
periment to five or six decimal places,
quantum chromodynamics has won ac-
ceptance because of a few semi-quanti-
tative tests, a large weight of circum-
stantial evidence, and many
qualitative facts about the strong inter-
actions which it apparently explains.

In principle, quantum chromodyna-
mics is a comprehensive theory of the
strong interactions, and describes all of
the properties of the strongly interact-
ing particles. Ideally, we would like to
use quantum chromodynamics to calcu-
late the masses, lifetimes, magnetic
moments, scattering rates, and other
properties of the strongly interacting
particles—protons, neutrons, pions,
kaons, and other baryons and mesons.

In principle, all of nuclear physics is
contained within quantum chromodyn-
amics (because nuclei are bound states
of protons and neutrons) just as quan-
tum electrodynamics underlies atomic,
molecular, and solid-state physics (be-
cause atoms, molecules, and solids are
made from charged particles).

In practice, because of mathematical
difficulties, we are not able to extract
from this theory its predictions about
some of the most interesting questions,
for instance, the predictions concern-
ing the masses and quantum numbers
of the particles.

In fact, we aren’t even able to answer
some basic, preliminary questions. The
most basic preliminary question that
we aren’t able to answer concerns what

is known as “quark confinement.” As
we noted above, the fundamental ingre-
dients in quantum chromodynamics
are quarks and gluons. Yetquarks and
gluons apparently do not exist as indi-
vidual particles! Many attempts to
isolate a quark have failed. Most theo-
rists now believe that quarks and
gluons are permanently bound togeth-
er or confined in bound states. These
bound states are presumed to be the
actually observed particles—protons,
neutrons, and so forth. The perma-
nent confinement of quarks and gluons
into the observed particles is believed
to be a consequence of extremely strong
forces that develop, via quantum ef-
fects, as a result of the nonlinear na-
ture of the theory.

Many circumstantial arguments in-
dicate that quantum chromodynamics
really behaves in this fashion, and
some very interesting new numerical
calculations support this view. Howev-
er, because of the great complexity of
this theory, there is no analytic deriva-
tion or physical argument showing that
confinement of quarks really happens
in quantum chromodynamics.

The present status of the strong inter-
actions could be compared very roughly
to the theory of turbulence. There are
very good reasons to believe that turbu-
lence is described by the Navier-Stokes
equations of fluid mechanics. This has
been believed for many generations.
But such is the mathematical complex-
ity of the Navier—Stokes equations
that—despite a great deal of very ingen-
ious work—not much is understood
about turbulence from a quantitative
point of view. In the same way, quan-
tum chromodynamics has become fair-
ly well established as the correct theory
of strong interactions even though its
predictions about some of the most
basic questions are clouded by the
mathematical complexity.

One interesting approach to trying to
circumvent the mathematical difficul-
ties of QCD is the “1/N expansion,”
originally suggested by Gerard 't Hooft
in 1974. The 1/N expansion is only one
of a variety of approaches, and it too is
limited by mathematical difficulties;
nevertheless, the 1/N expansion has
provided some interesting insights.

Because the reasoning behind the
1/N expansion is a little bit abstract,
let me first describe the 1/N expansion
in some simple situations in atomic
physics.

Atomic physics

Let us consider the familiar Hamil-
tonian of the hydrogen atom:
2
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This Hamiltonian consists of the free
kinetic energy p*/2m plus a potential
energy — e?/r. One might think that

for small e® one could understand the
hydrogen atom by treating the poten-
tial energy as a perturbation.

This doesn't work because e is not
dimensionless and it doesn't make
sense to say that e is “large” or
“small"—the value of e¢* just depends
on the choice of units. After a rescal-
ing r—tr, p—p/t, with t =1/me?, the
Hamiltonian becomes

2
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and one sees that the “coupling con-
stant” e* appears only in an overall
factor me” multiplying the whole Ha-
miltonian, which merely helps set the
overall scale of energies. Therefore,
except for the overall scale of lengths
and energies (or times) the physics of
the hydrogen atom—and atomic and
molecular physics in general—is inde-
pendent of e, and perturbation theory
in e? is unenlightening.

Otherwise, atomic and molecular
physics would be completely different!
Weak coupling calculations of, for in-
stance, the structure of the iron atom
would be a basic technique in theoreti-
cal physics.

The hydrogen atom is a simple exam-
ple of a problem without a free param-
eter, because it can be described by the
reduced Hamiltonian

2
oy e (3)
2 r
in which there is no free parameter.
Likewise, other atoms and molecules
can be described by reduced Hamilto-
nians with e” scaled out.

Without a free parameter there is no
perturbation expansion. Insuch a case
what can one do? Apparently we have
no option except to look for an exact
solution, or to seek a numerical solu-
tion on a computer. For atomic phys-
ics, this is reasonable, because one can
solve the hydrogen problem exactly,
and computer solutions are feasible for
more complicated atoms.

But suppose—and this is the case in
QCD and in many other analogous
problems—that we were unable to dia-
gonalize the Hamiltonian exactly, and
that even a computer solution were
formidably difficult or impossible. How
then might we proceed?

To make progress, we must make an
expansion of some kind. Since there is
no obvious expansion parameter we
must find a hidden one. That is, we
must find a quantity one usually re-
gards as given and fixed that we may
treat as a free, variable parameter.

For instance, we may take a cue from
the spectacular developments of this
decade in critical phenomena. After
decades in which the study of critical
phenomena was thwarted by the ab-
sence of an expansion parameter, Ken-
neth Wilson and Michael Fisher sug-
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gested that to introduce a parameter,
one should regard the number of spa-
tial dimensions not as a fixed number,
three, but as a variable parameter.
They showed that critical phenomena
are simple in four dimensions and that
in 4 — e dimensions critical phenomena
can be understood by perturbation the-
ory in €. Even at € =1, the original
three-dimensional problem, this per-
turbation theory is quite successful.

How, by analogy, can we create an
expansion parameter “from thin air”
for atomic physics?

Instead of studying atomic physics in
three dimensions, where it possesses an
O (3) rotation symmetry, let us consider
atomic physics in N dimensions, so that
the symmetry is O (N). We will see
that atomic physics simplifies as N— 2,
and that it can be solved for large N by
an expansion in 1/N. (See the list of
suggested reading for another discus-
sion of this expansion.)

As we will see, the quantitative accu-
racy that can be obtained from the 1/N
expansion at N = 3 is quite modest; we
consider it here mainly to introduce the
concepts of the 1/N expansion.

The hydrogen atom

Now, how does one carry out the 1/N
expansion for atoms? We will first
consider hydrogen. Of course, the hy-
drogen atom is exactly soluble, so it will
not be startling to see it solved by an
expansion in powers of 1/N. But, as we
shall see, the expansion can also be
carried out for more complex atoms,
such as helium.

X

)o

He
H
y

1

For hydrogen we would like to solve
the Schrodinger equation

2
(_ 1 g2 f_.)qz,:Ew (@)
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(in units in which #=1). For simplic-
ity, let us consider the s-wave states
only, although it is not difficult to
include orbital angular momentum in
this procedure. For s-wave states, ¢/ is
a function of r only, and the Schré-
dinger equation can be written

[ (&, Nd) e,
2m \ dr* r dr r

(Actually, the “N" in equation 5 should
be N —1. For large N, the difference
between N and N —1 is negligible.
Similar approximations will be made in
some of the equations that follow.)
To eliminate terms with first deriva-
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tives from the Hamiltonian, we make
the transformation

H— ?‘N'HZH.I'

(this is equivalent to redefining the
wavefunction by ¢v=r *?J) where-
upon the Hamiltonian becomes
SO e

2mdr*  8mr* r
If now we rescale the radial coordinate,
defining r = N°R, then in terms of R

- L(_ by
N2\" 2mN? dR?

N/2

(6)
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Apart from the overall factor of 1/N?,
which only determines the overall scale
of energy or time, the only N in this
Hamiltonian is the N? that appears
with the mass in the kinetic energy
term. This is a Hamiltonian for a
particle with an effective mass M, ; =
mN?, moving in an effective potential
1 e’
Ver 8R’mn R
For large N the effective mass is very
large, so that the particle simply sits in
the bottom of the effective potential
well—the quantum fluctuations are
negligible. The ground state energy is
simply the absolute minimum of V.
To calculate the excitation spectrum,
one may, for large N, simply make a
quadratic approximation to the effec-
tive potential near its minimum, be-
cause the large effective mass ensures
that the particle stays very close to the
minimum of V_;. The anharmonic
terms in the expansion of V_; around
its minimum can be included as pertur-
bations; this leads to an expansion in
powers of 1/N.,
Consider next helium. Ifxandy are
the positions of the two electrons (co-
ordinates x, and y, ), the Hamiltonian is

1 d? dz)
H= — — T
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Let us once again consider s-waves, or
states of zero angular momentum. The
wavefunction of such a state is a func-
tion only of the rotationally invariant
quantities, which (figure 1) are the
distances x and v of the two electrons
from the nucleus, and the angle #
between the two electrons. Acting on
such a wavefunction, the Hamiltonian
takes a rather awkward-looking form,
but it can be simplified by manipula-
tions similar to those we carried out for
hydrogen. After a transformation

H —(xy sin 6)""* H (xy sin 6) ™"

and a rescaling x = N°X, y = N*Y, the
Hamiltonian becomes

(8)
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Once again, for large N, the kinetic
energy is suppressed, and the particle
simply sits in the minimum of the
effective potential. The ground state
energy is the absolute minimum of
V., and one could compute the excita-
tion energies from a quadratic approxi-
mation to V,; near its minimum.

Notice that for large N the helium
atom is very much like a molecule.
There are well-defined “bond lengths,”
the equilibrium values of x and y, and a
well-defined “bond angle,” the equilib-
rium value of 4. These bond lengths
and bond angles are well defined, with
negligible quantum fluctuations, be-
cause the effective mass, M,; = N’m,
is large, just as in a molecule the bond
parameters are well defined and the
quantum fluctuations small because
the nuclear masses are large.

As far as quantitative results are
concerned, the accuracy that can be
obtained at N = 3 is quite modest, as |
said before. For hydrogen it is quite
easy to show, by finding the minimum
of the effective potential, that the
ground state binding energy, to lowest
order in 1/N, is (2/N*me'. At N=3,
this is %, me*, while the actual value in
three dimensions is Y2 me.

As L. D. Mlodinow and N. Papanico-
laou have pointed out, the accuracy can
be improved a great deal by including
several terms in the series. The first
few terms in the 1/N expansion give a
binding energy for hydrogen of

E=(‘/2me“)4.N —#
, 2 3 )
(142 52 TR
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The factor in brackets should equal 1 at
N =3, but the sum of the first three
terms in the series is %. The exact
binding energy of hydrogen, known
from the exact diagonalization of the
Hamiltonian is, incidentally,

E=("Y2me")4N-1)* (13)
= (%2 me*)4N ~*
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For helium it is necessary to mini-

mize the effective potential numerical-
ly. A simple calculation shows that



the equilibrium “bond length” is ap-
proximately

x=y=01517T N*(1/me®) (14)

while the "bond angle” of the atom, to
lowest order in 1/N, is approximately

6 = 95.30° (15)

For the binding energy of the atom one
finds (10.95/N*)(me*), which at N = 3 is
1.217 (me*). The observed binding en-
ergy in Nature is 2.90 (me*). The agree-
ment is clearly not very good. It isn’t
known how much one could improve it
by including higher-order terms.

One can also use the 1/N expansion
to calculate quantities other than bind-
ing energies. For instance, it is inter-
esting to try to calculate the magnetic
susceptibility of the helium atom. A
standard quantum mechanical formula
relates the magnetic susceptibility y
(defined in terms of the energy shiftin a
magnetic field by AE= — oyH?) to
the expectation value of the square of
the distance from the electrons to the
nucleus. To lowest order in 1/N, this is
just the square of the “bond length” of
equation 14, so very little additional
calculation is needed. One finds that to
lowest order in 1/N the susceptibility is

LI
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The accuracy obtained from the first
term in the 1/N expansion is, again,
rather modest.

Quantum chromodynamics

Now let us return to our original
subject of interest, quantum chromo-
dynamics. The basic fact that makes
QCD a difficult theory to understand is
that in QCD, as in atomic physics, the
coupling constant can be scaled out of
the problem. Because the coupling
constant can be scaled out, perturba-
tion theory (although it is very impor-
tant and is the source of most of what
we know about this theory) does not
illuminate the key unsolved questions,
such as understanding confinement
and predicting the mass spectrum.

In atomic physics, it is obvious, on
dimensional grounds, that the coupling
constant can be scaled out of the prob-
lem. In quantum chromodynamics
this is far from obvious, but it is true.
Scaling out the coupling constant in
QCD involves the use of a mathemat-
ical machinery known as the “‘renor-
malization group” (which has also been
used in statistical mechanics to de-

scribe anomalous scaling laws). The
fact that the coupling constant can be
scaled out in QCD is probably one of the
most subtle discoveries to have been
made in particle physics. It was prop-
erly appreciated only after the discov-
ery of “asymptotic freedom’’ (the weak-
ness of the QCD interaction at very
high energies) in 1973, and it played a
great role in pinpointing quantum
chromodynamics as the correct theory.

In quantum chromodynamics the
probability amplitude for a quark to
emit a gluon (which is one of the basic
processes in this theory) is proportional
to the “color charge” g of the quark.
This quantity, which is rather analo-
gous to the electric charge of the elec-
tron in quantum electrodynamics, is
known as the QCD “coupling con-
stant.” The renormalization group
can be used to show that this coupling
constant g does not have a characteris-
tic value; rather, its value depends on
the energy scale of the processes one
considers—or on the units in which one
measures energy.

This can be a great advantage. The
variable nature of the QCD coupling
constant has made possible reliable
predictions concerning the high-energy
behavior of this theory. These predic-
tions are the basis for most attempts to
test QCD experimentally.

But the variable nature of the QCD
coupling constant also means that per-
turbation theory cannot answer the
central unsolved questions. Because
the coupling constant is variable and
depends on energy, its numerical value,
just as in atomic physics, can be ab-
sorbed by properly defining the overall
scale of energies. As in atomic physics,
nothing depends on the coupling con-
stant except this overall scale of ener-
gies, and therefore perturbation theory
cannot answer such unsolved problems
as explaining confinement and predict-
ing the mass spectrum.

To solve these problems, we must
somehow circumvent the apparent ab-
sence in QCD of a relevant expansion
parameter. The 1/N expansion of
QCD, originally suggested by 't Hooft in
1974, is an attempt to do this.

To describe the 1/N expansion, it is
necessary to describe QCD in somewhat
more detail. In QCD there is actually
not just one type of quark, but three
types or “colors” of quarks. These are
sometimes denoted as ‘“red,” *blue”
and “green” quarks (the primary col-
ors); here we will label the quark colors
by number: ¢' is the quark of type
(color) i, where ¢ may equal 1, 2, or 3,

Historically, the fact that there are
three colors was discovered from the
fact that the proton (or neutron) seems
to contain three quarks (one of each
color). Apart from color, quarks can
also be distinguished by another prop-
erty known whimsically as “flavor”

(up, down, strange, charm, etc.). The
quark flavor is very important in weak
and electromagnetic interactions but
unimportant for strong interactions, so
we will ignore the existence of flavor
and simply think of quarks as coming
in three colors.

Each color of quark participates
equally in strong interactions. This is
expressed mathematically by saying
that there is a symmetry group, denot-
ed by SU(3), relating the three kinds
(colors) of quark; mathematically, the
group has properties similar to the
rotation group. The fact that the sym-
metry is SU(3) and not SU(N) for some
other N expresses the fact that the
number N of quark colors is equal to 3.

One of the basic processes in QCD is
the process in which a quark emits a
gluon

quark — quark + gluon

The initial and final quarks have three
color states each; the gluon field is a
3x 3 matrix A ', in color space. Thus,
the most general allowed process is
that a quark of type g ' emits a gluon of
type A,' and becomes a quark of type g~

q'

2
q'

Because the 3x3 matrix for the
gluon field is required to be a traceless
matrix, it has not 9 but only 8 indepen-
dent components. This fact plays no
role in the large-N expansion, and we
may simply think of the gluon field as a
3x3 matrix.

At this point enters the innovation
that was introduced by 't Hooft in
1974. As in the atomic physics exam-
ple considered in the previous section,
't Hooft wanted to introduce a free
expansion parameter in a theory that
appeared to have no such parameter.
He suggested that one generalize from
three quark colors to N colors. We still
label the quarks as g ', but now { runs,
not from 1 to 3, but from 1 to N. The
symmetry group becomes SU(N) rather
than SU(3). The gluon field is now an
Nx N rather than 3 <3 matrix.

This step is similar to the method, in
atomic physics, of generalizing from 3
to N dimensions and from an 0(3) to
O(N) rotation symmetry.

As in the case of atomic physics, the
generalization has its benefits: 't
Hooft showed that quantum chromo-
dynamics also simplifies for large N,
The simplification has led to some rath-
er interesting insights, even though so
far we are still very far from being able
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to use the 1/N expansion to solve the
problems we would most like to solve.

The basic reason that quantum chro-
modynamics simplifies for large num-
bers of colors is very simple. For large
N, the gluon field A,' has N* compo-
nents (actually N*—1, but the differ-
ence between N? and N?—1 is unim-
portant if N is large). Therefore there
are N° (or N*—1) gluon particles
which might appear as intermediate
states in Feynman diagrams.

For large N, the Feynman diagrams
contain large combinatoric factors,
arising from the large number of possi-
ble intermediate states. Only the dia-
grams with the largest possible combin-
atoric factors need to be included when
N is large. So only a subclass of dia-
grams is relevant, and the theory sim-
plifies.

To see how this works in more detail,
let us consider the lowest-order contri-
bution to the gluon “vacuum polariza-
tion.” One gluon can split into two

gluons which then recombine into one;
this is the lowest-order “quantum cor-
rection” to the gluon propagator. (The
process is analogous to the creation of a
virtual e*e” pair, which contributes to
the vacuum polarization in QED.)

It is not hard to see that for any
choice of initial and final states, there
are N possibilities for the intermediate
state in the diagram. If the initial
state gluon is of type A,', it can split
into a pair of gluons, one of type A,*
and one of type A,*, where £ is arbi-
trary. Since there are N possible val-
ues of k, there are N possibilities for the
intermediate state.

In quantum mechanics one is always
required to sum over all possible inter-
mediate states. Therefore the contri-
bution of this diagram is proportional
to a combinatoric factor of N from a
sum over N different intermediate
states.

If quantum chromodynamics is to
have a smooth limit for large N, this
factor of N must somehow be canceled.
If the correction to the propagation of
the gluon were to diverge for large N in
proportion to N, all the other calcula-
tions would also give divergent results,
and we could not construct a useful
quantum chromodynamics for large
numbers of colors.

There is only one way to cancel the
combinatoric factor of N. We must
remember that in our calculations, for
each of the two vertices where a gluon
splits into two gluons or where two
gluons recombine into one, there is a
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factor of the coupling constant. If we
choose the coupling constant to be
g/v'N, where g is to be held fixed as
N — = then the factors of N cancel out
of figure 3 because N(g/v' N)* = g% in-
dependent of N. So the choice of the
coupling as g/v/ N gives a smooth limit
to the one-loop diagram of figure 3.

Moreover, this is the only choice of
coupling constant that gives a smooth
limit to this one-loop diagram. With
any other choice, the coupling constant
factor will not cancel the combinatoric
factor, and the large-N limit of QCD
will not exist.

But choosing the coupling constant
as g/v/Nis a fateful choice. Complicat-
ed diagrams will have factors of g/v/'N
at each vertex, and so will vanish for
large N unless, like the simple one-loop
diagram, they have combinatoric fac-
tors large enough to cancel the factors
at the vertex. It turns out that a
certain class of diagrams with the larg-
est combinatoric factors survives for
large N, while all other diagrams van-
ish as N—=,

For example, the three-loop dia-
grams in figure 4 each have factors of
(g/v/N)® from the six vertices. The
first turns out to have a combinatoric
factor of N° from summing over the
various intermediate states. Since
N3*g/v/ N)® = g° which is independent
of N, the first diagram survives and has
a smooth limit for large V. However,
the second diagram in figure 4 has only
a combinatoric factor of N, and vanish-
es for large N as 1/N*

o

The general class of diagrams that
survives for large N was originally
determined by 't Hooft. The diagrams
that survive are the *“planar” dia-
grams. A planar diagram is a diagram
that can be drawn in the plane with no
two lines crossing. The first diagram
of figure 4 is a planar diagram, and
survives as N —=, But the second
diagram in figure 4 is not a planar
diagram, since two gluon lines cross at
the center of the diagram, and it van-
ishes for large N.

The planar diagrams are a vast class
of diagrams. A typical planar diagram
with many loops is indicated in figure
5. Summing the planar diagrams is
clearly a very ambitious task. And
this—or something equivalent—would
have to be accomplished if the 1/N
expansion is to become a really impor-

tant tool for theoretical particle physics.

Since 1974, when t'Hooft first pro-
posed the 1/N expansion, this problem
has been the subject of some fairly
intensive study. We have been able to
gain a certain amount of insight, but so
far there has not been much tangible
progress.

If one could sum the planar dia-
grams, one could predict the particle
lifetimes, masses, magnetic moments,
and everything else, to lowest order in
1/N. One might think that without
being able to sum the planar diagrams,
one could learn very little from the 1/N
expansion. However, at this point we
encounter a surprise.

Even without being able to sum the
planar diagrams, we can get a consider-
able insight into the phenomenology of
quantum chromodynamics. The rea-
son for this is that there are certain
“selection rules” or qualitative proper-
ties that are preserved, diagram by
diagram, by each of the planar dia-
grams, but which are violated by the
nonplanar diagrams.

These selection rules can be regarded
as predictions or tests of the 1/ N expan-
sion, and are observed to be fairly well
satisfied in Nature. If, therefore, we
assume that the 1/N expansion is a
good approximation to the real world,
which has 1/N = /4, then we obtain by
means of the 1/N expansion an under-
standing of some qualitative properties
of the strong interactions that are not
otherwise well understood. Converse-
ly, the success of the selection rules
encourages us to believe that the 1/N
expansion is relevant to the real world.

The selection rules of the 1/N expan-
sion are roughly analogous to selection
rules in atomic or nuclear physics.
Even without a full understanding of
the wavefunctions or interactions of
nuclei, one can predict, for example,
that electric dipole transitions are fas-
ter than quadrupole transitions on the
basis of general properties of the inter-
actions which we do understand. Like-
wise, even though we cannot sum the
planar diagrams, we can make certain
predictions about the behavior of QCD
as N— simply from the fact that it is
the planar diagrams that dominate.

For a full treatment, the reader is
referred to the literature. But let me
give a few examples here,

In nature there are observed three
spin-one mesons of different charge,
the p*, p°% and p°, which have approxi-
mately the same mass (about 71:0
MeV). We understand why their



masses are equal: This follows from
the fact that the strong interactions
remain invariant under rotations of
isospin, and the three mesons differ
only by the orientation, not the magni-
tude, of their isospin.

But there is a fourth spin-one parti-
cle, the w, which has almost the same
mass (about 784 MeV) as the p*, p", and
p". The w is not related to the p by
isospin; it is an “isosinglet.” There is
no reason of symmetry for the » to have
equal mass with the p, so why are the
masses so close?

The 1/N expansion provides a possi-
ble answer. We are not able to sum the
planar diagrams so as to determine
what masses the p and » have to lowest
order in 1/N. But it is easy to show
that the planar diagrams do not distin-
guish the p from the @ and therefore
give them the same mass. So the p and
o have equal masses to lowest order in
1/N. That their masses are approxi-
mately equal in the real world indi-
cates that the 1/N expansion may be a
good approximation even at 1/N = "/s.

As another example, let us consider
the B meson, which weighs 1237 MeV
and decays (figure 6) to four pions:

B—womrmnr (20)

It is possible for this decay to proceed
through a resonance

Beor (21)

followed by the subsequent decay
W— T

Now the question arises, what frac-
tion of B decays are resonant and what
fraction non-resonant? We do not
know how to sum the planar diagrams
s0 as to predict the rate of either decay
20 or 21. However, it is easy to show,
by counting powers of N, that the prob-
ability amplitude for process 21 scales
with N like 1/N'*, while that for 20
scales like 1/N%2. Therefore, we pre-
dict that, at least for large N, process 21
will dominate. There should be of
order N* resonant decays for every one
non-resonant decay. In fact, the reso-
nant process is observed to dominate by
a large margin. Again, this encourages
us to hope that the 1/N expansion is a
good approxlmatlon

A A

The last example that we wtll consid-
er here is this: why does there not
exist in Nature a meson-meson bound
state? Why is there, for instance, no
77" bound state, which would be a
meson of charge two, or a K"K" bound
state, which would have charge zero

and strangeness two? (Such states are
called “exotics” by particle physicists.)

We can argue that such bound states
should be absent at least for large N,
because it is simply not possible to draw
a planar diagram describing the scat-
tering, for example of two 7' mesons.
Any diagram describing the scattering
of two 7' mesons must involve non-
planar gluon exchange, and would be of
order 1/N* Although we cannot sum
the diagrams with nonplanar gluon
exchange, we can say that the potential
of interaction between two 7' mesons is
of order 1/N* This potential is, there-
fore, weak if N is large.

The 7'7* potential is a short-range
potential, because it involves exchange
of strongly interacting particles, all of
which have masses. Because a weak,
short-range potential will not produce
a bound state, there are no 7*7* bound
states, at least if N is large. This
argument doesn't depend on any spe-
cial properties of pions and is valid in
all exotic channels. The absence of
exotic bound states is again an encour-
aging sign for the 1/N expansion,

In short, the 1/N expansion has
made a respectable contribution to our
understanding of the phenomenology
of quantum chromodynamics. The
success of the selection rules gives basis
for hope that the 1/N expansion may be
a reasonably good approximation in
QCD (better, let us hope, than in atomic
physics!). And finally, the 1/N expan-
sion also seems to be a reasonable
framework for thinking about the main
unsolved problems of quantum chromo-
dynamics.

Suggested reading

e The 1/N expansion developed from the
spherical model of T. H. Berlin and M.
Kac, Phys. Rev. 86, 821 (1952), and was
formulated in a more modern version by
H. E. Stanley, Phys. Rev. 176, 718 (1968).

e QCD: The first application to QCD was
by G. 't Hooft, Nucl. Phys. B72, 461
(1974); B75, 461 (1974)

Some recent reviews of the 1/N expan-
sion in QCD, from different points of
view, are:

G. Rossi and G. Veneziano, Nucl. Phys.
B123, 507 (1977); G. F. Chew and C. Ro-
senzweig, Phys. Reports 41C, No. 5 (1978);
A. de Rujula, talk at the 1979 European
Physical Society Conference (CERN pre-
print); S. Coleman, Erice Lectures, 1979
ito appear); E. Witten, Nucl, Phys. B160,
57 (1979),

e Planar diagrams: There is a certain
amount of literature by now on the prob-
lem of trying to sum planar diagrams.
One particularly interesting paper is E.
Brezin, C. Itzykson, G. Parisi, and J, B.
Zuber, Comm. Math. Phys. 59, 35 (1978),

e Atomic physics: A recent study of the
1/N expansion in atomic physics is L. D
Mlodinow and N. Papanicolaou, “SO(2,1)
Algebra and the Large N Expansion in
Quantum Mechanics,” Berkeley pre
print, November 1979
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