
Statistical mechanics of simple
fluids: beyond van der Waals
Equilibrium properties of dense fluids, notoriously difficult to treat
theoretically, can now be understood by reference to model systems, such as
a fluid of "hard spheres," and to calculations on high-speed computers.

Joel L. Lebowitz and Eduardo M. Waisman

Dense fluids, defined to include both
dense gases and liquids, have the repu-
tation of being especially difficult to deal
with theoretically. This reputation is not
undeserved. Unlike dilute gases and
crystalline solids, which can be thought of
as deviants from well understood ideal
states, the ideal gas and the ideal har-
monic crystal, the dense fluid lies far from
any recognizable landmark. This rules
out the use of straightforward, convergent
or asymptotic, expansions—the all-pur-
pose tool of the theoretical physicist—and
makes even the hardy wince.

In recent years, there have, neverthe-
less, been some significant advances in the
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theory,1 particularly for very dense fluids,
for which we now have approximations to
the free energy and structure function
that are accurate to a few percent. This
progress has come about from the recog-
nition that while there is no analytically
simple reference system there does exist
a practical reference system for dense
fluids. It is a model fluid of hard spheres,
that is, a system of little billiard balls
having the same density p as the real fluid
and a diameter d that is a prescribed but
rather complicated function of the density
p and temperature T of the real fluid.
The tractability of the hard-sphere fluid
and the realization that it can serve as a
quantitatively useful reference system
owe a great deal to the availability of
high-speed computers. Figure 1, for ex-
ample, shows the results of two such cal-
culations: a plot of the position of the
atoms in a crystal of "computer argon"
that is just starting to melt and a picture

of a drop of liquid computer argon. It is
our purpose to describe the ideas used in
this work, which, as we shall see, go back
over a century to van der Waals.

Formulation of the problem

We shall assume here that, for the
range of temperatures and densities we
are interested in:
• It is permissible to consider our system
as consisting of electrically neutral par-
ticles interacting through pair potentials
that depend only on the distance r be-
tween their centers, and
• A macroscopic system of such particles
can be described by classical statistical
mechanics.

We will not discuss the justification of
this description, that is, its deduction
from an analysis of a system consisting of
electrons and nuclei obeying quantum
mechanics. Indeed, we expect that a full
description would involve very compli-
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cated many-body interactions between
the atoms, so that the pair potential we
will consider is best thought of as an
"effective" interaction. Remarkably
enough, this potential can be adequately
represented over a wide range of tem-
peratures and densities by a simple ana-
lytic formula, such as that due to Sir John
Lennard-Jones.

In this comparison computers play a
central part. By computer simulation we
can, at selected temperatures and densi-
ties, solve "exactly" the classical many-
body problem. The result of these
"computer experiments" can then be
compared with
• experiments on real fluids to test the
adequacy of the classical description and
of the assumed interparticle potential,
y theoretical predictions to test the
(unavoidable) approximations.
For example, the data on the zero-pres-
sure densities of real fluids shown in fig-
ure 2 are in excellent agreement with
theoretical results based on the Len-
nard-Jones potential.

The intermediary role of the computer
is important since direct comparison of
results obtained from a theoretical ap-
proximation scheme with experiment
tests simultaneously both the basic de-
scription and the approximation scheme
and frequently leaves in doubt the sources
of discrepancy. Even more important,
the computer permits experiments on
idealized test systems, such as hard
spheres, that are not available on Nature's
shelf. Such models play a very important
role in the development of useful theories
of real fluids.

A typical form of the pair potential,
commonly used for simple fluids, is the
Lennard-Jones "6-12" potential

u(r) = 4f [(ff/r)12 - (a/r)6] (1)

The potential u{r) is sketched in figure 3.

The "appropriate" values of e and a for
different simple fluids, determined either
from low density properties or from other
fits such as that shown figure 2, are re-
markably consistent. They can be found
in reference 1.

The important features of the pair po-
tential are the strong short-range repul-
sion at small r and the relatively weak
longer-range attraction at larger r. As a
consequence, each particle in a dense fluid
feels simultaneously the attractive (but
not repulsive) part of the interaction of
many other particles. This suggests that
it may be useful to separate the effects of
the different parts of u(r): the short-
range part keeps the particles apart and
is responsible for the local correlations
while the long-range part sees only the
gross (macroscopic) density profile of the
fluid and provides an attractive potential
well (mean field) for the fluid particles.
The latter is also responsible for the con-
densation from the gas into the liquid
below the critical temperature Tc. We
shall discuss later how this separation can
be implemented formally by writing v(r)
as a sum of two parts, a short-range re-
pulsive part, q(r), and a long-range at-
tractive part, w(r):

v(r) = q(r) + w(r) (2)

The different roles that q(r) and w(r) play
in determining the structure of a dense
fluid are essential to useful approximation
schemes.

Van der Waals's equation of state

The recognition of the different roles
played by q and w dates back at least to
Johannes van der Waals (figure 4) who
used it in 1873 to develop the equation of
state that bears his name,

p(p,T) = kTp/(l-pb)-ap2 (3)
Figure 5 shows van der Waals's graphs of

this relationship. (A centennial confer-
ence2 celebrating this discovery by van
der Waals was held in Amsterdam in
1973.) In equation 3 the positive pa-
rameters a and b are related to the at-
tractive and repulsive parts of the po-
tential. As described in any number of
textbooks, b is the "volume" taken up by
a molecule in "excluding" other molecules
from it, thereby decreasing the space
available for the motions of the other
molecules. This increases the effective
density and thus increases the pressure to
kT/(p~^—b) from the ideal-gas value kTp.
The term -ap2, which also appears in van
der Waals's approximation for the free
energy, represents the energy per unit
volume of the attractive part of the po-
tential. This energy acts to hold the
system together and thus decreases the
external pressure needed to maintain the
fluid in a given volume.

The van der Waals equation gives a
good qualitative representation of the
isotherms of a real fluid at "high" tem-
peratures. For T less than the critical
temperature Tc = 8a/27bk, however, each
isotherm contains a part that has a nega-
tive slope; that is, the equation predicts
that a decrease in pressure results in a
decrease in the volume of the system.
Such a situation is thermodynamically
unstable and can be proven3 never to arise
from a correct statistical mechanical
computation of the equilibrium pressure
of a macroscopic system whose particles
interact via reasonable potentials. James
Clerk Maxwell read and appreciated van
der Waals's paper, his thesis, immediately
after its publication. (Maxwell's interest
can be gauged from his statement4 that
the thesis "has certainly directed the at-
tention of more than one inquirer to the
study of the Low Dutch language in which
it is written.") He interpreted parts of
the van der Waals isotherms at low tem-
peratures as representing metastable and
unstable states of matter (rather than
equilibrium states) and amended the van
der Waals equation of state for T < Tc by
Maxwell's equal-area construction that
we describe in figure 5. This construc-
tion is designed to make the chemical
potentials equal in the two phases. With
this amendment the van der Waals
equation, with suitably chosen constants
a and b, gives a qualitatively reasonable
equation of state for many fluids: better
than some purely empirical equations of
state with many more adjustable param-

Computer simulations of dense liquids. The
plot on the left shows the motion of the atomic
centers in a crystal of "computer argon" that is
just beginning to melt; here the atoms are
starting their disorderly motion that will even-
tually turn the crystal into a liquid. The "expo-
sure time" for this plot by Aneesur Rahman at
Argonne National Laboratory was 3.4 picosec.
On the right we show a drawing of a super-cooled
droplet of computer argon, from a molecular-
dynamics study by Myron Mandell of Systems,
Science and Software. Figure 1
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eters. Indeed, George Uhlenbeck has
complained that the successes of the van
der Waals equation "were so remarkable
that they practically killed the subject for
more than fifty years."5

Rigorous derivation

The Maxwell amendment of the origi-
nal van der Waals equation is an ad hoc
addition to an approximation that is
qualitatively correct above Tc but leads to
non-physical, certainly non-equilibrium,
isotherms below Tc. The reason for this
failure lies in the assumption that all
particles of the fluid see the same average
attraction —ap (see equation 3). The
system must then necessarily be in a sin-
gle phase of density p; the assumption
does not allow for coexisting liquid and
vapor phases at different densities in

different regions of the container.
Clearly when these regions have linear
dimensions larger than the range of u(r)
the energy density will be different in
different regions. If the fraction of vol-
ume occupied by the liquid (density p\) is
a (and, of course, the fraction of vapor—
density pv—is 1 — a) then the attractive
energy per unit volume is not

-a {api + (1 - a) pv)2 = -ap2

but has the lower value

-a[api2 + (1 - a)Pv
2]

It is precisely this latter value that corre-
sponds to Maxwell's construction or the
equivalent Gibbs double tangent con-
struction for the free energy.

A very interesting derivation of the van
der Waals equation of state with Max-
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well's rule was given by Nicolaas van
Kampen6 in 1964. In this derivation the
volume occupied by the system is divided
into a large number of cells, each small
compared with the range of the long-
range attractive force, but large enough to
contain many particles. Avoiding the
pitfall of assuming a uniform distribution
of particles over cells, van Kampen ob-
tained the distribution over cells by
minimizing the free energy. His method
leads to the van der Waals equation of
state, as modified by Maxwell, which im-
plied a first-order phase transition.

An entirely different mathematically
rigorous approach to the van der Waals
equation of state was taken by Marc Kac,
Uhlenbeck and Per Christian Hemmer.7

Their work concerned a one-dimensional
system of hard "spheres" (rods in one di-
mension), for which the repulsive poten-
tial of equation 2, q(r), is infinite for r <
d and vanishes for r > d; we shall call this
function qj(r). The attractive potential,
w(r), has a range 1/7:

w(r, 7) = — (4)

Kac, Uhlenbeck and Hemmer were able
to prove the validity of the van der Waals
equation of state, together with the
Maxwell rule, in the "van der Waals
limit," where the potential has an infinite
range, 7 —>• 0. (Such a limit was first
considered by George Baker for the case
of lattice systems.8)

The limit 7 —• 0 provides a clear dis-
tinction between the short range of q(r)
and the long range of w(r, 7). Sincethis
limit is taken after the "thermodynamic
limit" (in which the size of the system
becomes infinite) the range of w(r, 7) is
independent of and small compared to the
size of the system or the size of coexisting
liquid and vapor regions. By contrast,
the usual mean-field theory (in which
each particle moves in the average field
due to the whole rest of the system) does
not produce the Maxwell construction.

Joel Lebowitz and Oliver Penrose9

combined the ideas of van Kampen with
the use of the van der Waals limit. They
considered systems with interparticle
potential of the form given in equation 2
with w(r) a "Kac potential"

w(r, 7) = 7'' <p{y r) (5)

where 7 is a positive parameter and v is
the dimensionality of the space consid-
ered. This potential reduces to that given
in equation 4 when v = 1 and 4>(x) =
—ae~x. By imposing certain conditions
on q(r) and <j>(r), Lebowitz and Penrose
showed that in the limit 7 - • 0, taken in
such a way that the range 7" 1 remains
small compared to the size of the system,
one obtains the Maxwell construction:

lim pip, T, y)
>->o

= MC \p° (p, T) - ap2\ (6)

where MC stands for the operation in-
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volved in Maxwell's construction and
p°(p, T) is the pressure of a reference
system defined by w(r, 7) = 0, which may
itself have a transition of its own. The
van der Waals parameter a is given by

a = - ' / 2 J w(r, 7) dV

=-V2/</>(*)dx (7)

Metastable and critical regions
Penrose and Lebowitz also showed10

that the correct equation of state for a
system that is constrained to have uni-
form density on a scale large compared to
the interparticle spacing but small com-
pared to 7"1 is given in the limit 7 --• 0 by
that part of the curve p'Hp, T) - a/>'2 that
falls between the densities pv and p\.
They further showed that for densities in
the metastable region—but not in the
unstable (spinodal) region—of the phase
diagram, the lifetime of such a uniform
state goes to infinity as 7 — • 0. This
property of theories of the van der Waals
type appears to depend crucially on the
length scale, 7"1, of the attractive po-
tential (which is responsible for the phase
transition) going to infinity. It is gener-
ally accepted that the lifetime of the
metastable state is finite for systems with
realistic potentials. There is no general
agreement, however, on whether the
possibility of analytic continuation of the
pressure into the coexistence region that
is exhibited by the van der Waals equa-
tion also holds for real systems. Most
workers feel it does not.

A similar situation exists also for the
behavior of the system in the vicinity of
the critical point. Near the critical point,
many of the system's parameters vary
with temperature according to some
power of T — Tc. The behavior given by
equation 6 and its analog for magnetic
systems yields classical values for the
critical exponents. This is in disagree-
ment with experiments on real systems
and with calculations on systems with
fixed finite range (or rapidly decaying)
potentials. The reason is the intrinsic
long-range correlations in the neighbor-
hood of the critical point. An equation of
the van der Waals type, such as equation
6, is a reliable approximation only when
the -range of the attractive potential is
large compared to the scale of the relevant
correlations. Improved approximations
that are like van der Waals's (such as
those we describe below) therefore cannot
be expected a priori to be useful for the
immediate vicinity of the critical point.

Beyond van der Waals

We now outline the steps used in ob-
taining a good approximation to the
properties of a classical fluid whose atoms
interact via the Lennard-Jones potential
given in equation 1.
• The most useful decomposition of the
potential appears1' to be the one shown in
ligure 3. The minimum energy of the
Lennard-Jones potential is —e; it attains

this value at a radius of 21/fi a. One de-
fines q(r) = v(r) + t for r < 21/fi and zero
otherwise; and w(r) = v(r) — q(r). Both
q and w and their derivatives are contin-
uous for all r; q corresponds to a purely
repulsive force while w corresponds to a
purely attractive one. This is presumably
the reason for the success of this decom-
position.
• The thermodynamics and radial dis-
tribution function of the "reference sys-
tem," one for which v{r) = q{r), are ob-
tained most conveniently by a perturba-
tion about a "zero order reference system"
of hard spheres of diameter d. The
"correct" choice of d depends on the
temperature and density of the fluid and
is extensively discussed in the literature.'-
Suffice it to say that a good choice for d
can be obtained from knowing only the
form of the hard-sphere radial distribu-
tion function for r near d, at density p.
• Once the properties of the reference
fluid are obtained the attractive part w(r)
becomes a weak perturbation, which is
treated either in a straightforward ex-
pansion or in some self-consistent
scheme.

For many purposes a useful—and often
sufficient—description of the microscopic
structure is given by the correlation
function of molecular distances, that is by
the variation of the fluid density with
distance from a given molecule.

Let AN(r) be the average number of
molecular centers within a spherical shell
of thickness Ar at distance r from the
center of the given molecule. We define
the "radial distribution function":

g(r) = AN(r)/(4wr'2Ar) as Ar >0 (8)

Because p is the average density, g{r) = 1
corresponds to no correlation between the
particles. It is always assumed thatg(r)
approaches unity as r becomes infinite in
a single phase fluid; this is almost a defi-
nition of a pure phase.19

The radial distribution function de-
termines the average value of all pair
functions in a uniform fluid, including, in
particular, the energy and pressure of a
fluid with central pair potentials.
Moreover, the Fourier transform of the
function h(r) = g(r) — 1 is an experi-
mental observable: the elastic scattering
intensity of x rays and neutrons depends
on it. The scattering is, in fact, propor-
tional to the "structure factor" of the fluid
.S'(/;), which is defined as

S(k) = 1 + "-^-p ( rh(r) sinkr dr
k «/<>
= 1 + ph(k) (9)

The direct correlation function, C(r),
introduced by Leonard Ornstein and Frits
Zernike1:l plays an important role in the
modern theory of dense fluids. It is de-
fined in terms of Mr) as

Johannes Diderik van der Waals. The question
of improving the van der Waals equation "con-
tinually obsesses me, . . . it is with me even in
my dreams." Figure 4

or in terms of Fourier transforms:

C(k) = pfi(k)) (11)

The functions C(r) and h(r) contain, in
principle, the same amount of informa-
tion: given one of them for all r the other
can be obtained from equations 10 or 11.
It turns out, however that C(r) is simpler
and therefore easier to approximate
(guess) than #(/•).

There are two ways of obtaining the
equation of state from g{r):
• from the virial theorem

p/kT = p
99 r
3 Jo

'dv(r)

dr
g(r)r3dr (12)

Mr) = C(r)
+ /) $ h < ) d:V (1(1)

• from the compressibility

= l - p C ( 0 ) (13)
The two relations give the same results for
the pressure with the exact g{r) but will
generally disagree for approximate dis-
tribution functions g.1

The hard-sphere fluid

The hard-sphere potential, qd(r), is
infinite whenever r is less than the hard-
core diameter d, and zero otherwise. In
principle, one can obtain both the radial
distribution function gdir) and the excess
Helmholtz free energy per particle
<Jd(p, T) of the system from the prescrip-
tions of equilibrium classical statistical
mechanics. Yet, even for this simple
zero-order reference system there are no
exact results available at present. In the
last twenty years however, following the
first computer studies of hard spheres,
some very good and simple approxima-
tions have been found for this system.14

The computer results provide the radial
distribution function and the equation of
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state as a function of T), the volume frac-
tion occupied by the hard spheres: r\ =
wpd*/6. The hard-sphere system has a
maximum density at close packing with 17
= ir/(3V2).

One of the most surprising findings of
these computer studies is the presence of
a fluid-solid phase transition at density
corresponding to a value of r\ near 0.5, a
value we shall call rj, although this system

shows no temperature-dependent liq-
uid-vapor transition. There is evidence15

that this hard-sphere phase transition
"underlies" the fluid-solid transition for
simple fluids. This shows again the
dominant influence of the repulsive
short-range forces in determining the
structure of simple dense fluids. For the
liquid state we are describing in this ar-
ticle it is sufficient to consider densities

Plots of isotherms from van der Waals's thesis, showing van der Waals's curves (labeled Fig. 1),
unstable isotherms according to James Thomson (Fig. 2) and experimental curves from Thomas
Andrews (Fig. 3). While van der Waals's recognized that the isotherm DEF represents unstable
states, it remained for Maxwell to show exactly where to draw the line CEG that represents the stable
states, namely, so as to equalize the areas CDE and EFG. Figure 5

smaller than r). (A theoretical description
of the fluid-solid phase transition remains
an open challenge.)

We now describe briefly one of the most
successful attempts to approximate the
hard-sphere system in this regime. In
1958 Jerome Percus and George Yevick
introduced16 an approximate nonlinear
integral equation for the radial distribu-
tion function of fluids. It is most suc-
cessful for the hard-sphere system (see
figure 6), for which the approximation
consists of assuming that the direct cor-
relation function C(r) vanishes outside
the core. This happens to be exact in the
one-dimensional fluid of hard rods.17

Michael Wertheim18 and Everett Thiele19

obtained the solution of the Percus-
Yevick equation. It gives C(r) as a cubic
polynomial in r for r < d with coefficients
that are simple rational functions of r).

One can obtain equations of state from
these polynomials via either equation 12
or 13, that is, from the virial theorem:

pM/pkT = (1 + 7] + rf - 3TJ3)/(1 - r/)3

or from the compressibility

P^lpkT = (1 + T/ + 772)/(l - 7))3

For t] <rj the pressure obtained from the
computer studies falls between p (v ) and
p ( c ) . N. F. Carnahan and K. E. Starling
obtained20 an equation of state for hard
spheres, which interpolates between plv)

and p ( c ) and is essentially indistinguish-
able from p for t) < rj:

p/pkT
= (1 + 7/ + rj2 - (14)

From equation 14 it is easy to obtain the
excess free energy ad, that is, the free en-
ergy above that of an ideal gas at the same
temperature and density:

ad(ri)/kT = - r,)2 (15)

Interestingly enough, the pressure ob-
tained from the Percus-Yevick equation
via the compressibility coincides exactly
with an equation of state obtained earlier
by means of an entirely different
method—the scaled particle theory.21

Real fluids

There are several, more or less equiva-
lent, prescriptions available in the liter-
ature1 for calculating the properties of
single-phase fluids, once the properties of
the reference hard-sphere system are
known. The most straightforward of
these are the high-temperature expansion
method of Robert Zwanzig and its self-
consistent formulation by John Barker
and Douglas Henderson. We present
here, in outline form, a more refined
method due to Hans Christian Andersen,
David Chandler and John Weeks.11

We start from the decomposition of the
Lennard-Jones potential shown in figure
3. The next step is to select a hard-sphere
system with a temperature- and density-
dependent diameter d(p, T) to approxi-
mate the Lennard-Jones system with
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potential q(r). (We shall call the Len-
nard-Jones system the reference system
and denote its properties with subscripts
0.) A good (but not unique) choice used
by Andersen, Chandler and Weeks is the
condition, introduced by Percus and
Yevick,22 that

J [e-<?(r)/AT _ e-qdir)/kT]

Xyd(r) d3r = 0 (16)

The function yd(i") in equation 16 is de-
fined as the hard-sphere limit of the
function eLl(r)MTgu(r), wheregv(r) is the
radial distribution function of a fluid
whose pair potential v(r) approaches the
potential qd(r) as a limit. It is also pos-
sible to define y^(r) directly for a hard-
sphere system by means of Mayer graphs.
In any case, yd(r) is equal to gd(r), the
distribution function for hard spheres, for
r < d and is smooth at r = d. In practice
one can obtain Vd(r) by extrapolating the
function gd(r) from r 3: d into the small
region r < d where it is needed.

Having determined the effective
hard-core diameter d(p, T), which is
generally quite close to <y (near the triple
point of the Lennard-Jones fluid, for ex-
ample, d is 1.02 <T), one approximates the
properties of the reference fluid by those
of the hard-sphere system:

go(r) ^ e-o{r)/kTyd(r) (17)

ao(p, T) ~ ad (v) (18)

The next and final step is to obtain an
approximation for the full system. For
that, we note first that there are exact
upper and lower bounds on the free en-
ergy a{p, T) given by the Gibbs-Bogo-
liubov3 inequalities:

S g(r)w{r)d3r <a
+y2pj go(r)w(r)d*r (19)

where g(r) is the radial distribution
function of the full system. When the
fluid is very dense g(r) is very close to
go(r) (see figure 7). Therefore one can
accurately approximate the free energy
per particle at these high liquid densities,
using equations 17 and 18, by

a(p,T)=ad(r))
+ V2P2 S go(r) w(r) (20)

Equation 20 represents the first two
terms in a high-temperature series (in
powers of 1/kT) for a system in which q(r)
~ 1d(r), with d fixed. It is clear that this
approximation is very close in spirit to van
der Waals's analysis of the different roles
played by q(r) and w(r) in determining
the structure and thermodynamics of the
very dense fluid. Indeed, equation 20
would agree with the van der Waals ap-
proximation for the free energy9 when
q(r) = qd(r) and w(r) has a sufficiently
long range forgot) to be approximately
unity over most of the range of the inte-
gration. We remark that the actual
computation of the right side of equation

o
1—
o
-z_
=>

2.5

DISTANCE r/d

Radial distribution function. The graph shows
the results of a computer calculation (dots) and
of a calculation with the Percus-Yevick ap-
proximation for a hard-sphere fluid with a nor-
malized density r\ of 0.49—the largest density
the fluid can have. Figure 6

20 is nowadays a relatively simple, desk-
calculator task, due to the availability of
very compact fits for the relevant quan-
tities.12

When we consider lower fluid densities,
po":! < 0.65, the effect of w{r) on the radial
distribution function must be included to
obtain quantitative agreement with lab-
oratory and computer experiments. For
example Andersen, Chandler and Weeks
have obtained a non-linear integral
equation for a "renormalized potential"
£(r) that is very similar in structure to the
integral equation in the Percus-Yevick
approximation for hard spheres. In the
simplest version of their scheme, called
the exponential approximation, g(r) is
obtained from £(r) through

g(r) =go(r)e -£lr)/kT (21)

At low densities £(r) goes to w(r) but at
large fluid densities it is smaller and has
a shorter range than w(r). In particular,
if g(r) ~ gu(r) (which is true for large fluid
densities) then £(r) vanishes.

The exponential approximation, and
the corresponding thermodynamic func-
tions, are found to give an accurate de-
scription of the dense single-phase Len-
nard-Jones fluid. In fact, for pa'A i. 0.65
the radial distribution function is within
the "experimental" accuracy of the com-
puter experiments,21 so that in a scale
such as that of figure 7 the two curves
completely coincide; the accuracy is a few
percent for Ma1" between 0.65 and 0.1, as
long as T < 3 Tc. For very high temper-
atures the approximation of q(r) by qd(r)
is not so accurate, because the high kinetic
energy of the particles permits them to

penetrate deeper into the repulsive part
of the potential.

Other problems

We have presented here in outline form
a relatively simple approximation scheme
for obtaining a quantitatively accurate
description of a dense, single-component,
simple classical fluid. As mentioned
earlier there are various other similar
schemes,1 which do about as well in the
same situations.23 All these approxima-
tions start from the recognition of the
different roles played by the repulsive and
attractive parts of the interactions. The
former determines the microscopic
structure of the fluid and may be idealized
by a hard-sphere interaction while the
latter can be treated by refined approxi-
mations of the mean-field type.

This approach generalizes in a natural
way to mixtures of simple fluids.1 Here
again the solution of the Percus-Yevick
equation for mixtures of hard spheres
with different diameters17 plays an im-
portant role. These types of approxi-
mations have also been applied with rea-
sonable success to not-so-simple fluids in
which the interparticle interactions are
only roughly spherical,1 such as methane.
Analogous schemes have been developed
and applied to ionic and polar fluids
where the interactions decrease only very
slowly with distance. Here too some
successes have been achieved although
much remains to be done. This is espe-
cially so for fluids such as water, where the
interactions depend strongly on orienta-
tion. All these extensions are clearly of
great practical importance and are cur-
rently under active investigation.

Another topic of current interest is the
structure of non-uniform fluids particu-
larly, the interface between gas and liquid.
So far, however, the type of approach
described in this article has only been
qualitatively successful for these prob-
lems. Quantitatively, there is only little
advance beyond the old van der Waals
theory.2 The reason for this appears to
lie in the lack of any simple reference
system for such an interface. Unlike the
situation in the bulk fluid, the width and
structure of the interface at temperatures
away from the critical temperature are
strongly affected by both the repulsive
and the attractive parts of the interaction
potential and there is no simple way to
disentangle them.

This brings us to the final point we wish
to make here: even in the case of simple
dense fluids there is still much to do to
understand why the schemes described
here work as well as they do.23 After all,
the effective range of the attractive part
of the Lennard-Jones potential is not
really all that large compared to a, as one
can see in figure 3. Why then should van
der Waals's, and similar theories, valid for
very weak, very long-range potentials
work so well for Lennard-Jones fluids?
George Stell1 calls this "the principle of
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2.2

Comparison of radial distribution functions for a Lennard-Jones fluid near the triple point. The
black line shows <?o(r). the distribution function for the "reference system" whose potential is only
the repulsive part of the Lennard-Jones potential; the colored line shows the result of the exponential
approximation; the spots are from a molecular-dynamics calculation Figure 7

unreasonable utility of asymptotic esti-
mates" and it bears further investigation.
An understanding of this point will, we
hope, also lead to new, useful and simple
approximation schemes for systems that
are not covered by the present methods.

* * *
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