

- temperature cycling to 350°C*
- for operating pressures to <10⁻¹⁰ torr
- ceramic-metal bonded
- available in mini vacuum flanges and weld adapters
- up to 10 pins
- ratings to 700 VDC, 3.5 amp

*with plug disconnected

For details, request CATALOG 7801

Ceramaseal, Inc.

A SUBSIDIARY OF JUNTERPACE

NEW LEBANON CENTER, NEW YORK 12126 (518) 794-7800 • TELEX 14-5442

Booth #26 A.P.S. Show

Circle No. 73 on Reader Service Card

ASTRONOMICAL TE-241RF are the applications for the TE-241RF photomultiplier tube chamber. Totally RF shielded for wide dynamic range, single photon counting, this model uses no liquid, no slurry. And it operates reliably for 15 hours on a single loading of crushed dry-ice. Our liquid nitrogen model, TE-176 and dry ice Model TE-200 (end window tubes) and TE-159RF (side and dormer window tubes) are laboratory oriented and provide stable, frost-free operation. Call (617) 774-3250 or write:

obituaries

magnetic resonance under Robert V. Pound and Edward M. Purcell.

Appointed an assistant professor of physics at the University of Florida in 1958, Scott joined that faculty and served 21 years, until his death. He was promoted to full professor in 1966. He contributed greatly, in teaching, research and administration, to the growth and maturing of the physics department.

Scott contributed many pioneering developments to the application of nuclear magnetic resonance and nuclear quadrupole resonance to solid-state physics, especially at high pressures and low temperatures. His many publications and extensive editorial work, brought international recognition, culminating in his election in 1975 as president of the International Committee on Nuclear Quadrupole Resonance Spectroscopy.

Scott's colleagues held him in highest regard, both as a scientist and as a person. He was quiet, unassuming, and kindly, but thorough and effective. He participated from the beginning in the biennial series of International Symposia on Nuclear Quadrupole Resonance Spectroscopy, and he organized the third symposium, held in 1975 in Tampa, Florida. Scott was a member of the Executive Committee of the International Union of Magnetic Resonance, and was an invited speaker and contributor at Ampere and other international conferences and colloquia in Europe and elsewhere.

Tom Scott will be sorely missed, by his students and by his colleagues and scientific associates, both at home and abroad.

> STANLEY S. BALLARD JAMES R. BROOKEMAN University of Florida E. RAYMOND ANDREW University of Nottingham

Dorus P. Randall

Dorus Powers Randall professor emeritus of physics at Syracuse University, died 19 August at the age of 90. Born in Covert, Michigan, he received his bachelor's and master's degrees from Western Reserve University where he was an instructor in physics until 1919. Randall was a Cutting Fellow at Harvard University between 1919 and 1921. He joined the physics department of Syracuse University in 1921 with the rank of assistant professor and retired as a professor in 1955.

During his thirty-four years of service at Syracuse University, Randall was in charge of the advanced undergraduate courses in electrical measurements and electronics. His textbook and laboratory manual on electrical measurements had three editions. He published research papers on ballistic galvanometers and fluxmeters.

After this retirement, Randall taught courses at Cornell University, Harpur College (now the State University of New York at Binghamton) and Utica College. He subsequently spent several years conducting research for the Syracuse University Research Corporation.

His associates remember Randall as a modest, friendly and cooperative colleague whose devotion to his teaching and whose high standards of laboratory performance will remain ideals worthy of emulation.

> JOHN W. TRISCHKA Syracuse University

Katharine Burr Blodgett

Katharine Burr Blodgett, a retired General Electric scientist who was internationally recognized for her research on thin films, died on 12 October. The 81-year-old scientist was the first woman to earn a doctoral degree in physics from Cambridge University.

Blodgett was the inventor of a technique for making non-reflecting "invisible" glass, a material used in virtually all camera lenses and many other optical devices. In 1938, she applied a coating of 44 monolayers of transparent liquid soap to glass to reduce reflections from the surface. Later, scientists discovered a means for making similar non-reflective films adhere permanently to the glass.

She was also responsible for developing an instrument that can measure film thicknesses to within a few angstroms. Knowing that each layer of a film composed of many layers reflects a specific color, Blodgett constructed a device that would allow investigators to determine the thickness of a film by comparing the film's color with the colors in the gauge. It proved to be a simple and accurate method of measurement.

Blodgett took her bachelor's degree from Bryn Mawr College in 1917 and her master of science degree from the University of Chicago the following year. She then joined the staff of the GE Research Laboratory, where she worked with Nobel laureate Irving Langmuir. On the advice of Langmuir, Blodgett enrolled in the doctoral program at Cambridge University. She received her PhD in 1926. Upon her return to GE, she worked with Langmuir on improving tungsten filaments in electric lamps. During the Second World War, Blodgett did research on methods of removing ice from airplane wings. She is also credited with the development of a new type of smoke screen. In 1963, the scientist who Langmuir described as a "gifted experimenter" with a "rare combination of theoretical and practical ability," retired.

Circle No. 76 on Reader Service Card

CRYOGENIC TEMPERATURE SENSORS

SMALL · FAST & ACCURATE

CALIBRATION TRACEABLE TO NBS STANDARD

Germanium Resistance Temperature Sensors Calibrations from 0.02 to 100K

> Silicon Diode Temperature Sensors Calibrations from 1.5K to 400K

Gallium Arsenide Diode Sensors Calibrations from 1.5K to 400K

Carbon Resistance Temperature Sensors
Calibrations from 4.2K to 300K

Platinum Resistance Temperature Sensors Calibrations from 20K to 873K (600°C)

Chromel/Gold .07 Atomic % Iron Thermocouples Calibrations from 1.5K to 400K

Send for New Catalog of Sensors, Readouts and Controllers

632 SOUTH 'F' STREET * LAKE WORTH, FL 33460 TELEPHONE 305/585-9451 * TELEX 51-3474