NESLAB'S CRYOCOOLS OPERATE CONTINUOUSLY WITHOUT ATTENTION

You can rely on Neslab's CRYO-COOLS to maintain temperatures to - 100°C without danger of trap warmup. Eliminate the handling and storage problems of dry ice and liquid nitrogen. CRYOCOOLS feature flexible immersion probes in 3 styles.

The CRYOCOOL II series has been designed to maintain selected low temperatures with a stability of ±0.5°C or better. Designed for use with the CRYOTROL temperature controller, the CRYOCOOL II series allows modulation of the refrigerant flow. CRYOCOOL II can also be used as a standard,

non-controlled unit, cooling to the lowest attainable temperatures under existing load conditions.

Built with the quality and precision that

marks every Neslab instrument, CRYOCOOLS meet your exacting laboratory needs.

For more information...

FOR

"Off-The-Shelf"

OPTICS

IN THE U.S.A.

For use with:

- Vacuum diffusion pump traps
- Freeze dryers
- Vapor freezing traps
- Low temperature physical testers

Call the leader - toll free 1-800-258-0830

In N.H. call collect 603-436-9444

ESLAB the name in circulation

NESLAB INSTRUMENTS, INC. 871 ISLINGTON STREET, PORTSMOUTH, N.H. 03801 U.S.A.

Circle No. 65 on Reader Service Card

Your Best Current Integrators Since 1964 Source

BIC

Model 1000-C*

- Highest accuracy
- · Widest current span
- · Lowest input impedance
- · Internal offset & test supply
- · Solid state (LED) readout
- Automatic dead-time correction
- · Inputs of either polarity
- Ground isolated from case
- Remote control capability
- Pulse integration without external filters

Complete specs on request BROOKHAVEN INSTRUMENTS CORP.

11124 Jollyville Rd. Austin, Texas 78759 (512) 345-4282

*Also available without internal counter as Model 1000-A

PHYSICS TODAY / MARCH 1980

P.O. Box 148 . Arcadia, Calif. 91006 Circle No. 66 on Reader Service Card

ROLYN OPTICS

300 North Rolyn Place

Circle No. 67 on Reader Service Card

obituaries

out the very large projectile charge-state dependence of atomic collision processes. It was the initial research of Macdonald that provided the impetus for the development of a full-scale accelerator-based atomic physics program at Kansas

His research was consistently distinguished by originality and by thoroughness. Because his experimental studies were generally theoretically motivated. the results consequently had a large impact on the field of atomic collisions and formed the basis on which many others have built.

As fruitful as were his research efforts, there was another side of Macdonald that was known primarily to those who worked with him on a day-to-day basis. His desire to seek knowledge was complemented by his desire to share knowledge, to teach. He demanded the right to teach at the freshman-sophomore level where he could encounter non-science majors, for he firmly believed that in order for science to remain a valued part of our society it must be appreciated by all educated persons. Many desire to teach, but few deserve the title teacher so well as did James Macdonald. For those of us who encountered him, though his life was too brief, it was a privilege, for we did learn much from

> C. E. HATHAWAY Kansas State University

David W. Koopman

David W. Koopman, research professor of physics in the Institute for Physical Science and Technology at the University of Maryland, died on 21 December at the age of 44.

His research activities were concentrated at the interface between atomic processes and plasma phenomena. Prior to 1970, Koopman's principal interests were ion collision processes, including charge exchange by multiply-charged ions, and quantitative atomic spectroscopy using a shock tube as a light source. More recently, Koopman directed his studies towards plasma phenomena, laser applications, and problems of controlled

Koopman received a BA in physics from Amherst College in 1957 followed by MS (1959) and PhD (1964) degrees in physics from the University of Michigan at Ann Arbor, where he was a research student of the late Otto Laporte. He then joined the Maryland faculty in the Institute for Fluid Dynamics and Applied Mathematics which is now the Institute for Physical Science and Technology. Koopman was promoted to full research professor in 1973. During his 15 years at Maryland he directed the work of five PhD thesis students and a number of research associates.

In addition to his research at Maryland, Koopman was a consulting scientist with the Maryland Institute of Technology, Inc., the Atlantic Research Corporation, and Versar, Inc. At Versar he was a codiscoverer of the laser guidance of electrical discharges in gases; this work led to his collaboration over the last five years with scientists at the US Naval Research Laboratory on high voltage, laser-guided sparks.

Koopman's work at Maryland in recent years has been concerned with momentum transfer and other dynamical aspects of rarefied plasma flow. These novel experiments involve laser-produced plasmas expanding into a stationary background plasma, studied by means of tunable lasers, holography and resonant

scattering by ions.

Another program in which Koopman took great pride was the development of tunable coherent light sources in the vacuum ultraviolet. He and colleagues accomplished this in 1978 for the spectral region of hydrogen Lyman-alpha radiation—around 122 nanometers. Applications of this technique will make possible the measurement of hydrogen isotope concentrations in magnetically confined plasmas of the Tokamak type.

Those of us who have worked with David Koopman will remember him particularly for his high standards in scientific research, his persistence and patience with himself and others in solving even the most complex problems, and the good humor he brought to his scientific and personal relationships with us.

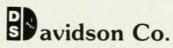
RITA MAHON THOMAS D. WILKERSON Institute for Physical Science and Technology University of Maryland

Edward P. T. Tyndall

Edward P. T. Tyndall, former professor of physics at the University of Iowa, died in Long Beach, California, on 29 September. He was 86. Tyndall retired from his long-term teaching career at the University of Iowa in 1960.

Tyndall was born in Durban, South Africa, in 1893, of English parents. The family later moved to the Zulu Reservation high in the mountains north of Durban, where his father owned a trading post for the Zulu natives. When he was four years old the family returned to England for one year, then came to the US in 1898. Tyndall was educated in the Richmond, Va. public schools and received his AD degree from Richmond College in 1912. He taught in high schools in Virginia and North Carolina for the next three years.

Tyndall enrolled as a part-time gradu-


Multi-Channel Analyzer

Models NIM 1056 and NIM 4106

Now available in std. 4 wide modules optional IEEE-488 I/O

8 input low noise Gated Router in single NIM available

(203)288-7324

19 Bernhard Road • North Haven, CT 06473

Booth #78 A.P.S. Show Circle No. 68 on Reader Service Card

150 picosecond risetime detector FAST, CLEAN and SENSITIVE

This model 3317 high speed photodetector is, at this point, one of the fastest known; it's sensitive and it's clean—thanks to unique internal construction. Check the basics—

- Designed for mode locked and Q-Switched laser pulses and CW optical signals with frequency components as high as 2 GHZ
- Optical bandwidth performance 0.4 to 1.2 μm
- · Dual voltage power supply for normal and high sensitivities
- Power supply impedance switch for pulsed or CW optical signals
- Impedance matched cables
- · Mounting rod, diffuser, filter holder

For details check the bingo card, or write. For fast details, call!

LASERMETRICS, INC.

111 Galway Place, Teaneck, N.J. 07666 (201) 837-9090 Telex 134492

Booth #10 A.P.S. Show Circle No. 69 on Reader Service Card