west, he accepted an appointment as research professor at Southern Illinois University in Carbondale where he remained very active for the next six years in teaching, research and in organizing a series of conferences on topics related to the applications of science.

The years in Mendocino County were as fully active as any in Marshall's life. In addition to continuing links with the Lawrence Livermore Laboratory, he became involved in community affairs ranging from a role of leadership in development of a rural transit authority to one of promoting basic studies in seacoast and timber management.

Marshall was born of missionary parents in Canton, China in 1902 and spent his pre-college years in the Western Pacific. This formative period, amid diverse peoples and cultures, provided him with an unusually broad capacity to work with individuals from many walks of life. He had a circle of devoted friends with whom he shared his numerous interests.

FREDERICK SEITZ
The Rockefeller University

James R. Macdonald

James Robert Macdonald died at the age of 43 on 12 December 1979 while participating in a session of the APS Division of Electron and Atomic Physics Meeting in Houston, Texas. His sudden, unexpected death is felt deeply throughout the international community of physics, particularly by those engaged in research on atomic collisions and by those of us who knew him as an ebullient friend of seemingly boundless energy.

Macdonald was born in Toronto, Canada, receiving his BA degree in 1958 from the University of Toronto, and was a secondary-school teacher in Toronto from 1958 to 1962. He entered McMaster University in 1962 and was awarded a MSc degree in 1964 and a PhD in physics in 1966. He continued his research in physics as a National Research Council Fellow at the Niels Bohr Institute from 1966 through 1968. He joined the department of physics at Kansas State University in 1968 and earned the rank of professor by 1975.

Macdonald made significant contributions in atomic physics through experimental electron and atomic collision studies and in the development of the equipment and techniques used for such studies. He had the foresight to recognize the unusual opportunities offered by nuclear accelerators as sources for the study of atomic collisions using heavy-ion, high energy projectiles. He and his students pioneered many techniques for determining atomic cross sections using methods of charge analysis, x-ray and Auger analysis, and coincidence techniques. He was among the first to point

Our engine-ruled gratings have been well-known for years. Now we make holographic gratings as well. Each is manufactured with extraordinary care and expertise for the exacting requirements of our instruments and yours.

Holographic Cratings

The optical perfection of the holographic process brings out the best in grating performance. High resolution. Freedom from ghosts. Minimal stray light (down to 0.005%). The upshot — higher signal-to-noise ratio where maximum energy is imperative.

We offer these new gratings for research, education, and OEM needs. Ruling range 600 to 2400 grooves/mm. Blazed for increased spectral efficiency, as high as 63%, at wavelengths from 180 to 1000nm. Stringently tested.

We're competitive as well as precise. Our plane holographic replica gratings start at \$22. Delivery within 2 weeks for listed gratings. Send for our list.

Jarrell-Ash Division Fisher Scientific Company

590 Lincoln Street Waltham, Massachusetts 02154 (617) 890-4300

Circle No. 63 on Reader Service Card

- 10-6 TORR TO ATMOSPHEREchoice of 9 ranges
- · Thermocouple gauges
- · Cold cathode ion gauges
- LVDT diaphragm gauges

Request FREE CATALOG #300.

TELEDYNE HASTINGS - RAYDIST

- · All solid-state circuitry
- Build-in or cabinet models
- · Single or dual controllers
- · Recorders and alarms
- Compact, stable, dependable; rapid response

P.O. Box 1275 Hampton, VA 23661 Phone (804) 723-6531

vibration, and are corrosion resistant and non-contaminating.

Circle No. 64 on Reader Service Card

NESLAB'S CRYOCOOLS OPERATE CONTINUOUSLY WITHOUT ATTENTION

You can rely on Neslab's CRYO-COOLS to maintain temperatures to - 100°C without danger of trap warmup. Eliminate the handling and storage problems of dry ice and liquid nitrogen. CRYOCOOLS feature flexible immersion probes in 3 styles.

The CRYOCOOL II series has been designed to maintain selected low temperatures with a stability of ±0.5°C or better. Designed for use with the CRYOTROL temperature controller, the CRYOCOOL II series allows modulation of the refrigerant flow. CRYOCOOL II can also be used as a standard,

non-controlled unit, cooling to the lowest attainable temperatures under existing load conditions.

Built with the quality and precision that

marks every Neslab instrument, CRYOCOOLS meet your exacting laboratory needs.

For more information...

FOR

"Off-The-Shelf"

OPTICS

IN THE U.S.A.

For use with:

- Vacuum diffusion pump traps
- Freeze dryers
- Vapor freezing traps
- Low temperature physical testers

Call the leader - toll free 1-800-258-0830

In N.H. call collect 603-436-9444

ESLAB the name in circulation

NESLAB INSTRUMENTS, INC. 871 ISLINGTON STREET, PORTSMOUTH, N.H. 03801 U.S.A.

Circle No. 65 on Reader Service Card

Your Best Current Integrators Since 1964 Source

BIC

Model 1000-C*

- Highest accuracy
- · Widest current span
- · Lowest input impedance
- · Internal offset & test supply
- · Solid state (LED) readout
- Automatic dead-time correction
- · Inputs of either polarity
- Ground isolated from case
- Remote control capability
- Pulse integration without external filters

Complete specs on request BROOKHAVEN INSTRUMENTS CORP.

11124 Jollyville Rd. Austin, Texas 78759 (512) 345-4282

*Also available without internal counter as Model 1000-A

PHYSICS TODAY / MARCH 1980

P.O. Box 148 . Arcadia, Calif. 91006 Circle No. 66 on Reader Service Card

ROLYN OPTICS

300 North Rolyn Place

Circle No. 67 on Reader Service Card

obituaries

out the very large projectile charge-state dependence of atomic collision processes. It was the initial research of Macdonald that provided the impetus for the development of a full-scale accelerator-based atomic physics program at Kansas

His research was consistently distinguished by originality and by thoroughness. Because his experimental studies were generally theoretically motivated. the results consequently had a large impact on the field of atomic collisions and formed the basis on which many others have built.

As fruitful as were his research efforts, there was another side of Macdonald that was known primarily to those who worked with him on a day-to-day basis. His desire to seek knowledge was complemented by his desire to share knowledge, to teach. He demanded the right to teach at the freshman-sophomore level where he could encounter non-science majors, for he firmly believed that in order for science to remain a valued part of our society it must be appreciated by all educated persons. Many desire to teach, but few deserve the title teacher so well as did James Macdonald. For those of us who encountered him, though his life was too brief, it was a privilege, for we did learn much from

> C. E. HATHAWAY Kansas State University

David W. Koopman

David W. Koopman, research professor of physics in the Institute for Physical Science and Technology at the University of Maryland, died on 21 December at the age of 44.

His research activities were concentrated at the interface between atomic processes and plasma phenomena. Prior to 1970, Koopman's principal interests were ion collision processes, including charge exchange by multiply-charged ions, and quantitative atomic spectroscopy using a shock tube as a light source. More recently, Koopman directed his studies towards plasma phenomena, laser applications, and problems of controlled

Koopman received a BA in physics from Amherst College in 1957 followed by MS (1959) and PhD (1964) degrees in physics from the University of Michigan at Ann Arbor, where he was a research student of the late Otto Laporte. He then joined the Maryland faculty in the Institute for Fluid Dynamics and Applied Mathematics which is now the Institute for Physical Science and Technology. Koopman was promoted to full research professor in 1973. During his 15 years at Maryland he directed the work of five