we hear that

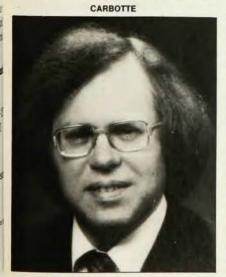
Robert W. Field wins H. P. Broida Prize

Robert W. Field, associate professor of chemistry at MIT is the first recipient of The American Physical Society's Herbert P. Broida Prize in Atomic and Molecular Spectroscopy or Chemical Physics. Field will accept the \$5000 award at the forthcoming March APS meeting in New York City.

An authority on molecular electronic structure and laser spectroscopy, Field will be cited, "for his design and execution of elegant and original laser spectroscopic studies of isolated small molecules, for providing new techniques such as optical-optical double resonances and for the development of stimulated emission pumping of molecules leading to a whole class of new molecular laser systems." In addition, the APS will recognize his work on the "exploitation of intramolecular perturbations, which act as 'windows' on missing electronic states."

Field earned a bachelor's degree from Amherst College in 1965. Seven years afterwards, Harvard University awarded him master's and doctoral degrees in physical chemistry. From 1971 to 1974, at the Quantum Institute, University of California, Santa Barbara, he did postgraduate work with Broida and David O. Harris, whereupon he joined the MIT faculty as assistant professor of chemistry. Field was an Alfred P. Sloan Fellow from 1975 to 1977 and is currently on the editorial board of the Journal of Molecular Spectroscopy.

The Broida prize was established in 1979 as a memorial to the late molecular spectroscopist, H.P. Broida. It is supported by Broida's friends and colleagues and the Office of Naval Research. The next prize will be tendered in 1981 and others will follow thereafter in odd-numbered years until 1987.


EIEI D

Carbotte and Drake receive Canadian medals

The Canadian Association of Physicists has presented its 1979 Medal for Achievement in Physics to Jules P. Carbotte and the 1979 Herzberg Medal to Gordon W. F. Drake.

Carbotte, a solid-state theorist at McMaster University, earned his bachelor of science degree from the University of Manitoba in 1960. McGill University awarded him his master's and doctoral degrees in 1961 and 1963, respectively. He then spent a year and a half as a post-doctoral fellow at Cornell University. In 1965 Carbotte joined the McMaster faculty. Carbotte's major research work has been on positron annihilation and thermalization, the theory of superconduc-

DRAKE

tivity in relation to microscopic parameters and on the transport properties of sp metals and their dilute alloys.

Drake, an atomic physicist at the University of Windsor, was granted a bachelor of science degree from McGill in 1964. A year later the University of Western Ontario awarded him a master of science degree and in 1967 he earned a doctoral degree from York University. For two years following his doctoral work. Drake served as a National Academy of Sciences research fellow at the Smithsonian Astrophysical Observatory. He subsequently became a member of the physics department at Windsor. Drake's research has centered on the theory of atomic processes including relativistic effects, radiative transitions, electronatom and atom-atom scattering.

ACS recognizes Poskanzer for nuclear chemistry

The American Chemical Society has honored Lawrence Berkeley Laboratory scientist, Arthur M. Poskanzer, with its 1979 Award for Nuclear Chemistry. He will receive the award and a \$3000 prize at an ACS meeting in March.

Citing his "exceptional work in the use

Excellent stability—typically 50 ppm/ $^{\circ}$ C in closed-loop operation (attendant computer providing digital feedback). Excellent calibration accuracy— $\pm 0.3\%$ (monitor point). Linearity— $\pm 0.1\%$.

Economical bulk supply--minimizes price and space requirements.

Safety-engineered to provide lockout, avoiding potentially lethal electrical shocks.

Convenient, economical positive locking block connectors with built-in interlock.

Extended voltage range - ± 3 kV.

High resolution—10-bit programmability allows 3 V (2 V) steps for the 3 kV (2 kV) range.

Fully protected-Thermal

Short circuit Overvoltage User safety

32

high voltage channels in a CAMAC module!

LeCroy's Model HV2432 is a new concept in high voltage systems for particle physics detector arrays. A sophisticated design allows all of the HV regulation circuitry to be packaged within a single hybrid. As a result, the Model HV2432 offers exceptional density and economy. The unit consists of 32 high voltage regulators in a double-width CAMAC module. Each output voltage can be individually set under CAMAC control. Further, the HV2432 provides a monitor point which, under CAMAC program control, allows each hybrid to be read out by an external ADC to provide excellent calibration accuracy. The unit can be used for either positive or negative applications.

The Model HV2432 is the main building block of a multichannel computer-programmable high voltage supply system. As a CAMAC module, the device requires only an external bulk supply and one ADC for initial setup. It requires no special interface and no separate control cables. The software required is simple and easy to write. The unit is protected against short circuits and thermal overload.

The HV2432 is an economical, easy-to-use solution to your HV needs. Contact your local LeCroy representative for details.

Innovators in Instrumentation

Headquarters: 700 S. Main St., Spring Valley, N.Y. 10977. Offices: Chicago, (312) 626-6726; New England, (603) 483-8755; New York, (914) 425-0412; Palo Alto, (415) 856-1806; Geneva, Switzerland, (41 22) 98 97 97; Heidelberg, W. Germany, (06221) 28192; Hamburg, W. Germany, (040) 54 2713; Les Ulis, France 907.38.97; Wheatley, Oxford, England, (08677) 3540.

we hear that

of high energy nuclear reactions," the ACS recognized Poskanzer's discovery of 29 isotopic elements including two that had been predicted not to exist (Li¹¹ and Be¹⁴). He was also cited for performing the first differential recoil study, the first counter study of nuclear fragmentation and his formulation, with associates, of the fireball concept of nuclear collisions.

Poskanzer took an undergraduate degree at Harvard College in 1953. Columbia University awarded him an MA in 1954 and MIT a PhD three years later. A chemist at Brookhaven National Laboratory from 1957 to 1966, he then joined the LBL staff. For the past two years, Poskanzer has been scientific director of the Bevalac, LBL's relativistic heavy ion accelerator. He is spending the current academic year at CERN.

The American Society for Testing and Materials has presented the H.V. Churchill Award to Richard F. Jarrell, principal scientist and manager of the Optical Emission Spectrochemical Applications Laboratory, Jarrell-Ash Division of Fisher Scientific Company.

Julian Gibbs has been installed as the new president of Amherst College.

Gerald W. Stewart has joined the Applied Sciences Division of Aerodyne Research Inc as principal scientist and director of the Center for Chemical and Environmental Physics. Stewart was previously chief of the Supporting Research Branch of the Department of Energy Morgantown Energy Technology Center. Also coming to Aerodyne is James W. Duff, formerly of Los Alamos Scientific Laboratory. Duff will be senior research scientist at the Applied Sciences Division.

obituaries

Nathan Sanders Wall

Nathan Sanders (Sandy) Wall, professor of physics at the University of Maryland died on 2 September at the age of 54.

He was born in Chicago in 1925 and entered the Rensselaer Polytechnic Institute in 1943. Wall interrupted his education there for two years service with the US Army in the South Pacific, where he earned a Bronze Star for heroism by returning under fire to bring out a wounded comrade. He completed his BS degree at Rensselaer in 1949, and his PhD at MIT in 1954.

After research associateships at Indiana and Rochester Universities, Wall served as director of the MIT Cyclotron Laboratory from 1955 until 1964. In 1964, he accepted an appointment at the University of Maryland, where he played a senior role in founding their Cyclotron Laboratory and in planning the K = 165, 100-MeV proton cyclotron, which was one of the most advanced nuclear physics accelerators in the world when it became operational in 1970. In addition to his active involvement in research and teaching, Wall served on the Scientific Advisory Committee of the Space Radiation Effects Laboratory, on the Bonner Prize Committee of The American Physical Society and on the National Academy of Sciences-National Research Council's Subcommittee on Nuclear Structure.

His work exhibited his great breadth of interest, encompassing topics as diverse as improved measurement of the upper limit of electron lifetimes, subthreshold coherent pion production by composite projectiles, rearrangement effects in nuclear reactions, and the sensitivity of

WALL

gravitational wave detectors to cosmic rays. One major area of his work involved studies of elastic and inelastic scattering of various projectiles. Among these were measurements of nuclear sizes using elastic scattering of deuterons and, later, of electrons and medium-energy alpha particles. He was particularly interested in the optical-model description of elastic scattering, and in "unique" optical potentials for higher-energy composite projectiles. This interest spurred his efforts to probe the inadequacies of that model via experimental studies using medium energy protons and calculations in which he sought to modify the conventional optical potentials to include more sophisticated effects. One of his "first loves," to which he frequently returned during his career, was his discovery of the anomalous large-angle scattering of

EMI GENCOM PMT HOUSINGS FOR

- : Broadband Photon Counting
- : General Lab Use
- : O.E.M. Applications

EMI Gencom PMT Housings are unsurpassed for flexibility, ease of use, litetite construction, and RFI shielding. They are designed by engineers with years of Photomultiplier Application experience.

The "B" type shown above uses the unique Bayonet Lock, is available in STD and RFI versions, with and without flange and provides space for ACDC Power Supply if required. It accommodates all EMI 2" tubes and some competitive types.

The QL-30 is similar in design and fits all EMI 1-1/8" tubes. When supplied less flange, the slim line design allows compact packaging for OEM use. RFI shielded version available.

The new "S" Housing for side looking (squirrel cage) PMTs fits all tubes of this type, EMI or others. STD or RFI shielded versions available.

All of these new designs give improved performance at lower cost. Available from Stock.

Detailed data from:

EMI GENCOM INC.

80 Express St. Plainview, New York 11803 Tel (516) 433-5900 TWX 510-221-1889

Circle No. 32 on Reader Service Card

71