nificant part of the textbook. Nevertheless, devices that have come into fashion since the first edition such as tokamaks (can it be over 12 years?) are included with many helpful insights, though the author should have caught the repeated misspellings of the word itself.

It is much to Schmidt's credit that he does not write in a telegraphic style but follows through on the major mathematical developments. This is quite important for a textbook at this level. I shall enjoy the second edition fully as much as the first.

J. LEON SHOHET University of Wisconsin-Madison inherited from Galen" and contrasts them with the anatomical drawings of Leonardo da Vinci, which show his "transcendental genius." "Leonardo," we are told, "was probably the finest scientific observer that ever lived; unfortunately his anatomical work was not published until centuries later. His research programme, which was eventually carried out by Andreas Vesalius, depends absolutely on the consensibility of visual perception. In assessing the 'truth' of such work, the anatomist

should, in principle, take little account of theories; he simply carries out a dissection, and compares the drawings with what he can see with his own eyes. In practice, it is difficult for him not to see what he has learnt to see, under the influence of the accepted paradigm of his subject. But within that limitation of vision, the messages that anatomists communicate to one another, and store as 'objective knowledge' in the scientific archives, are drawings and photographs, to which

Reliable Knowledge: An Exploration of the Grounds for Belief in Science

J. Ziman 197 pp. Cambridge U., New York, 1978. \$18.95

John Ziman—physicist turned philosopher—tells us that this small volume has arisen from "two sources: a challenge and a theory." The "challenge" relates to the "beneficence of science," the "theory" is concerned with the "nature of scientific knowledge." It must be said at the outset, however, that the "beneficence" of science is not discussed directly and that the "theory" is less a theory of scientific knowledge in general than a discussion of physics primarily, or of aspects of science that may be like physics.

In discussing the "nature of scientific knowledge," Ziman sets forth the view that such knowledge is the currently accepted intellectual "map" of the external (or "material") world, a consensus resulting from an assemblage of independent experiments and observations, theories and critical tests. There is, therefore, no guaranteed scientific truth tested and approved by logic or computer programs; the state of knowledge at any time consists only of the shared set of beliefs of the scientific community. These ideas are much like the well-known analysis of Thomas S. Kuhn, who is mentioned primarly in footnotes, without any definite indication of the degree to which Ziman's presentation was directly influenced by Kuhn's

While there are scattered references to scientific events, past and present, there are no worked-out examples or case-histories. The result is that the presentation is needlessly abstract and general. And when Ziman does occasionally dip into history, he turns out to be a untrustworthy guide. For example, he criticizes medieval anatomical diagrams as mere illustrations of "the verbal descriptions of the human body

Automate your laboratory

Our 8030 CONCEPT system is your answer to higher production with lower operating costs. Here is everything you need to economically automate any plant or laboratory process - a powerful microcomputer system, compatible software, process interface modules, accessories - all in a single package ready to set up and operate.

These benefits reduce your operating costs:

- Flexible Interfacing. Choose from hundreds of standard I/O modules designed to the cost-saving ANSI/IEEE-583 standard for computer automated measurement and control (CAMAC).
- Maximum Uptime. Increase your process uptime with proven design concepts and reliability. Your CONCEPT system has a full two-year warranty.
- Economical Expansion. Automate a large distributed system as efficiently as a small dedicated one. Modularity and standardization insure that your 8030 CONCEPT meets your process needs today and in the future.
- Minimum Installation Costs. Move your 8030 CONCEPT quickly and easily into your process environment. Distributed data acquisition and control reduce your interface wiring costs. Screw termination panels permit fast, error-free field wiring.
- Flexible Packaging. Choose from a variety of mounting options for both normal and harsh environments.

Please contact us for additional information

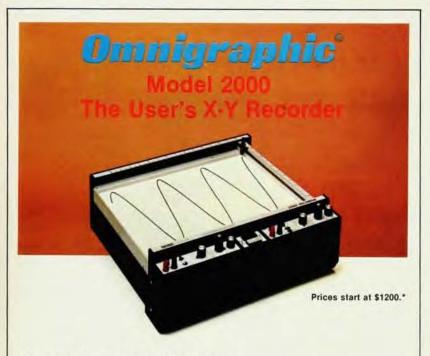
KineticSystems Corporation

Dept. PT110 • 11 Maryknoll Drive • Lockport, IL 60441 • (815) 838 0005 6 Chemin de Tavernay • 1218 Geneva, Switzerland • (022) 98 44 45 the accompanying text is merely a commentary." But, in fact, Leonardo's anatomical drawings of the heart show clearly and in detail a series of passages through the septum of the heart which do not exist, but which had been hypothesized by Galen in order to explain how blood may trickle from the left ventricle to the right ventricle through an apparently solid septum. And the female "situs" figure (or "transparent torso of a woman") reproduced in Ziman's text, far from illustrating his

thesis about careful observation, is described by Saunders and O'Malley in their authoritative work on Leonardo's anatomical researchers as "a unique attempt to represent in graphic form both anatomical detail and certain of the principles of the Galenical physiological system." Furthermore, "the anatomical details" themselves are not drawn from human bodies but, "for the most part from dissections made on animals." In the final section Ziman turns from "the world of science" to

"social knowledge." Here an evaluation is made of the "scientific status" of "intellectual disciplines such as social psychology, sociology, anthropology, and economics." Ziman finds that these disciplines are not like physics and convinces himself that they never will or can be. But he does not even consider the possibility that a future science of behavior of society may be like a physics of the future (as different from today's physics as today's is different from the physics of the past); nor does he believe that there may be valid science which is not like physics.

I. BERNARD COHEN
Harvard University


An Introduction to Radiation Dosimetry

S. Lovell

125 pp. Cambridge U., New York, 1979. \$18.50 clothbound, \$5.50 paperbound

The health sciences rely heavily upon developments in the allied physics and biophysical fields to attain their goals-the unraveling of the mechanisms of life and its degradation through disease, and lengthening of human lives through diagnostic and therapeutic intervention. The importance of ionizing particulate and electromagnetic radiations in medical research and clinical medicine exemplifies this fact, while the recent Nobel awards for radioimmunoassay and computed tomography dignify it. In this context, disappointing, nonmathematical textbooks on the physical principles underlying radiation dosimetry such as S. Lovell's An Introduction to Radiation Dosimetry cannot be expected to provide the insight to this field required by radiation technologists, junior scientists and physicians.

The author, who is at the Medical College of St. Bartholomew's Hospital, London, introduces general topics well; the interactions of ionizing radiation with atoms, the use of special radiation dosimetric quantities and units (for instance, absorbed dose and exposure) and measurement techniques such as cavity ionization, thermoluminescent and photographic dosimetry are reasonably summarized. Unfortunately, Lovell's introductory contribution is primarily a preface to the dosimetry problems associated with radiation protection and other health physics aspects of the utilization of radiation in medicine. The author should have drawn from real-life applications of ionizing radiation in the areas of diagnostic radiation, nuclear medicine and radiation oncology to clarify his topics. For example, could have illustrated radiation-matter interaction with examples of the utilization of electrons, negative pi mesons, fast neu-

Changes as your applications change

The Model 2000's rugged die cast mainframe serves as the basic building block. The addition of any of a score of interchangable plug-in modules allows you to tailor the recorder to meet your exact application. If your application changes it's no problem. By simply changing modules (it takes only minutes) the Model 2000 is ready to meet your new recording needs.

Unparalleled performance

In addition to its flexibility, the Model 2000 is the performance leader in X-Y recorders. It features speeds of 30 inches (76 cm) per second (40 inches [102 cm] per second available with high speed servo), overall inaccuracy of $<\pm0.2\%$ full scale, repeatability of $\pm0.1\%$ full scale, and non-linearity of $<\pm0.1\%$. Recording can be on 11" x 17" (DIN A3) or $8\frac{1}{2}$ " x 11" (DIN A4) paper with convenient snap-on pens.

Economical

The economical price of the Model 2000 is only part of the story. The true economy becomes evident when you consider that by simply plugging in a different module, you can change the function of the recorder. One recorder with interchangeable modules can perform virtually all of your recording needs. It may be the only recorder you'll ever need.

For complete information contact Houston Instrument, One Houston Square, Austin, Texas 78753. (512)837-2820. For rush literature requests, outside Texas call toll free 1-800-531-5205. For technical information ask for operator #2. In Europe contact Houston Instrument,

Rochesterlaan 6, 8240 Gistel, Belgium. houston ins Telephone 059/27-74-45. GRAPHICS DIV.

*U.S. domestic price only

Registered trademark of Houston Instrument

GRAPHICS DIVISION OF

BAUSCH & LOMB

Circle No. 28 for Literature Circle No. 29 for Representative Call