OPTICS FOR INDUSTRY

interferencefilters and neutral density filters

contact Rolyn Optics

P.O. Box 148, Arcadia, Calif. 91006

(213) 447-3200

(213) 447-4982

Circle No. 53 on Reader Service Card

LOW COST

Thermoelectric PMT Chamber

Fully-Wired Tube Socket Assembly (for all standard PMTs), Double-Pane, Non-Fogging Window and Front-Mounting Adapter. Model TE-182TSRF Air-Heat exchanged chambers provide reliable, high-quality cooling with excellent portability and flexibility. Design of this economical system is based on the widely used Products for Research Model TE-104. Model TE-182TSRF accepts 2" diameter or smaller end-on PMTs. Model TE-212TSRF accepts side window tubes.

Ask about our new 21-pin Ceramic Socket for cooling to Dry-Ice temperatures.

Circle No. 54 on Reader Service Card

we hear that

tral currents," a phenomenon crucial to the theory of the electroweak interaction.

Jerome I. Friedman, professor of physics at Massachusetts Institute of Technology, has been named director of the Institute's Laboratory for Nuclear Science.

obituaries

C. J. Gorter

On 30 March 1980 C. J. Gorter, one of The Netherlands' leading physicists, died after a long illness. He was 73 years old.

Cornelius Jacobus Gorter studied at the University of Leiden under W. J. de Haas and Paul Ehrenfest in the early 1930's. He obtained his doctoral degree in 1932 with a thesis entitled "Paramagnetic Properties of Salts." By that time he had already felt the stimulus of the work of John H. van Vleck, with whom he had close contact in later years.

After his doctoral work, Gorter worked for five years in Adriaan D. Fokker's laboratory at Teyler's Foundation in Haarlem. From there he went as a lecturer to the University of Groningen, after which he became extraordinary professor at the University of Amsterdam in Pieter Zeeman's chair. In 1946 Gorter succeeded Willem H. Keesom as professor at Leiden. He remained in Leiden as director of the Kamerlingh Onnes Laboratory until 1973

Among Gorter's most important scientific work was the discovery of paramagnetic relaxation, the electric analog of which was known since 1932 through the theoretical work of Ivar Waller. During the Second World War, he wrote a classic monograph on the subject "Paramagnetic Relaxation." Another important field of research in which he stimulated many of his collaborators was antiferromagnetism. Gorter studied many aspects of this phenomenon in CuCl₂·2H₂O and developed with Haantjes a theoretical description of antiferromagnetism in a double-sublattice substance.

Gorter was also active in other fields. In 1933 he was the first to apply thermodynamics to the transition of materials from the normal to the superconducting state. Together with Hendrik B. G. Casimir, he developed a thermodynamic description of the phenomenon, using a two-fluid model and an internal-order parameter. electrodynamics for this model were developed by Fritz and Heinz London about the same time. Gorter's contributions to the understanding of secondorder phase transitions should also be mentioned as should his formulation of the "Gorter-Mellink equation" for the

GORTER

mutual friction of two fluids in liquid

Gorter was a man of great kindness and integrity as well as brilliant physicist. During his career he served as president of the Royal Netherlands Academy of Sciences and vice-president of IUPAP. His high standing in international circles is attested to by his seven honorary doctorates from foreign universities and his membership in seven foreign science academies

J. VAN DEN HANDEL Kanerlingh Onnes Laboratory Leiden, The Netherlands

John D. McNutt

John D. McNutt, director of the Center for Positron Studies at the University of Texas at Arlington, died on 15 July 1980 at the age of 42. He received his education at the University of Michigan and Wayne State University. It was during his doctoral and postdoctoral training under Leonard O. Roellig that McNutt developed an enduring enthusiasm for low-energy positron research.

McNutt spent his entire professional career, beginning in 1967, in the department of physics of the University of Texas at Arlington. He was soon recog-