man who shared both of these attributes with unfaltering generosity.

STANLEY WOOLF ARCON Corporation Waltham, Massachusetts

Kenneth W. Robinson

Kenneth Robinson, a retired theoretical accelerator physicist at the Cambridge Electron Accelerator of Harvard University and MIT, died 11 January in San Diego, California. He was born in San Diego in 1925, took his undergraduate training at Caltech and his graduate work at Princeton. He worked briefly as a Research Engineer at the RCA Laboratories but spent most of his professional life with the CEA in Cambridge. His work was innovative, accurate and highly respected by his colleagues, especially other theoretical scientists. He was known within his small circle of admirers as a person who was always correct in his calculations and predictions.

Robinson published a paper in 1958 in the Physical Review on radiation effects in circular electron accelerators, which dealt with radiation damping and quantum excitation of single-particle motion, in which he enunciated for the first time the fundamental result that the sum of the damping rates for the three degrees of freedom is a constant independent of the focussing structure of the guide field and of the geometric arrangement of the radiofrequency accelerating fields. His studies of the coherent interaction between beams and radiofrequency cavities established important criteria for the design and tuning of rf systems. He foresaw, as early as 1956, several applications of wiggler magnets of different designs to the control of beam size as well as to the production of enhanced synchrotron radiation. Possibly the most influential of Robinson's accomplishments was his coinvention, with G.-A. Voss, of the low-beta technique for attaining, with limited stored currents, higher luminosities than has previously been thought feasible in colliding-beam storage rings. That technique-first demonstrated in the CEA Bypass System-has subsequently been used in all colliding-beam storage ring designs.

Robinson was a retiring and modest person and never married. When the CEA closed in 1974 he retired and subsequently had few communications with his former colleagues. However, those of us who knew and respected him feel that he made many important contributions to science in the active years he spent among us. He died of a heart attack in his apartment and burial was arranged by the Public Administrator of San Diego.

M. STANLEY LIVINGSTON

Santa Fe, New Mexico

JOHN R. REES

Stanford Linear Accelerator Center

QUADRUPOLE R.G.A.

ANALOG MASS DISPLAY

\$3150.

\$4150.

5x10 -11 TORR Minimum detectable partial pressure with 50% valler press

5x10-13 TORR 2 to 100 AMU • Minimum defectable partial pressure with 50% valley 10 Volt Output • Easy Change Filament Channel Plate and Faraday Defector

DIGITAL MASS DISPLAY

\$3850.

\$4750.

5x10-11 TORR 2 to 100 AMU • 10 Volt Output • Easy Change Filament

5x10-13 TORR Minimum detectable partial pressure with 50% valley Channel Plate and Faraday Detector • 2-100 AMU • 10 Volt Output Easy Change Filament

Compact mass Filter with Electron Multiplier Detector

6 Automatic sweep speeds with plug for external sweep or mass step generator • Manual mass selector for leak detection or closed loop partial pressure control • 0 to 10 volt outputs for X and X-Y recorder/or oscilloscopes • Easy change tungsten or thoria coated infolium filaments. No alignment required • Automatic filament protection circuit • optional 1 to 40 AMU range available on all models • Compact mass filter mounted on 2 3/4" conflat flange bolts directly to most

SIMS ESCA AUGER SEM

MOLYTEK, INC. 2419 SMALLMAN STREET, PITTSBURGH, PA 15222 (412) 261-9030

Circle No. 54 on Reader Service Card

Build Your Own Low Cost Dye Laser With Micropulse UV From Xenon!

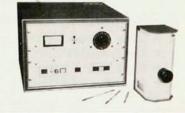
HIGH INTENSITY MICROPULSE SYSTEM

Pulse Duration	1-10µ
Energy Range	
Pulser	Model-457
High Intensity Point Source Flashtube	N-7220
High Intensity Line Source Flashtube	
Universal Housing	
Delay Trigger Pulser	Model-425

Other HIGH INTENSITY SHORT PULSE CAPABILITIES INCLUDE:

Model-437A and Related Nanolamps.
Pulse Duration 10 & Model 472 and Related Micropulse Flashtubes.
Pulse Duration 10—10
Energy Range 10—10

10 & 20 Nanoseconds


Applications Include: Dye Laser Pumping, Optical Ranging, Photo Chemistry, Semiconductor Studies, Fluorescence Studies and Specialized Photography.

10-100 Microseconds 100-2000 Joules

Write for our free 50-page catalog :

XENON corporation

"THE PULSED LIGHT SPECIALISTS" 66 Industrial Way, Wilmington, MA 01887 (617) 658-8940 TWX: 710-347-0630

XENON corporation

Circle No. 55 on Reader Service Card