Rhoderick clearly points out that the experimental situation is beset by problems associated with the metallurgical nature of the interface, the existence of chemical contamination, the presence of interface states, and oxide layers that may be present between the metal and semiconductor. The theoretical situation is also far from adequate because most efforts are directed at explaining ideal Schottky diodes, and even here the analytic problems are formidable. Treatments of real contacts seem to be far off. Despite this state of affairs, Rhoderick's assessment, with which I concur, is that "... we have a reasonably good working picture of metal-semiconductor contacts that serves as a basis for interpreting experimental results and also enables us to 'design' contacts to a limited extent to obtain particular electrical characteristics.'

The text contains an account of the theory of Schottky-barrier capacitance, including the effects of deep levels in the semiconductor and nonuniform doping profiles. A discussion of how to form "practical" contacts, and an excellent appendix comparing Schottky diodes and p-n junctions, round out the text.

The book is excellent as an in-depth introduction to the field from both the theoretical and experimental points of view. Graduate students, undergraduates and researchers will find the book quite valuable.

ALLEN ROTHWARF Institute of Energy Conversion University of Delaware Wilmington

General Relativity from A to B

R. Geroch

225 pp. Univ. of Chicago, Chicago, 1978. \$11.95

Many books for non-specialists treat a subject from "A to Z" and try to give answers to all the questions one either has been "afraid to ask" or has not thought to ask. Frequently one ends up with a collection of facts, but with little understanding. By the title of his book, General Relativity from A to B, Robert Geroch, a professor of physics and mathematics at the University of Chicago, signals that he does not intend to be all inclusive. Rather, he set himself the modest task of having his readers understand the revolution in thinking that was required by Albert Einstein's theory.

The whole discussion focusses on what is meant by a "space-time," a subject to which Geroch himself has contributed. He moves quickly from an absolute space and an absolute time to the Galilean view, where only time remains absolute. From the observation that the orbits of double stars are elliptical, one concludes that the

velocity of light is independent of the speed of its source. From measurements, one finds that it is also independent of the speed of the observer. From the observation that muons produced in the upper atmosphere reach the Earth, one deduces that elapsed time may depend on the speed of the clock. These deductions are incompatible with the Galilean view.

In what is the most difficult step in the book, Geroch defines the *interval* between nearby events and assumes it to be an invariant for all observers. Armed with this definition, he uses example after example to develop the modern notions of a relativistic space—time in which neither space nor time is absolute. The culmination is a beautiful chapter in which Geroch describes the essential features of a black hole. He draws on astrophysical evidence to support the existence of black holes, but properly cautions that the identifications are tentative.

All of this is done with a minimum of mathematics, although some knowledge of analytical geometry is helpful. Simple examples are used: observers moving in space-time and signals being exchanged between them. Geroch makes the basic arguments and explanations in terms of space-time diagrams. Over 100 such elementary line drawings appear in this book of 225 pages. The language is simple; the structure, direct. Throughout, the discussion is punctuated with comments that illuminate the nature of physics: What is real? What is true? What is an explanation? Where does observation enter? Why is prediction important?

This beautiful little book is certainly suitable for anyone who has had an introductory course in physics and even for some who have not. Moreover, it contains enough substance so that a modern physicist may find that he can learn something—perhaps only that a difficult topic can be presented to a general audience. The whole succeeds so well because Geroch believes that "physics is a human activity..." and wants to share some of its joys with others.

The layout of the book is good and the publisher has clearly reproduced the diagrams. With a little more care by the editor, however, about a half-dozen split infinitives could easily have been eliminated.


JOSHUA N. GOLDBERG Department of Physics Syracuse University Syracuse, New York

Physics of Thin Films

L. Eckertova

254 pp. Plenum, New York, 1977. \$27.50

Thin film is at present a field experiencing a fast progress in basic understanding as

Alpha excited X-Ray sources 0.1–5 Kev available calibrated in terms of photons/second/steradian.

Calibrated alpha standards also available including G_d -148, A_m -241, C_m -244 and T_h -230.

Write for your catalog or call collect— 213-843-7000

ISOTOPE PRODUCTS LABORATORIES

213-843-7000 1800 N. Keystone St., Burbank, Ca. 91502 Circle No. 36 on Reader Service Card