
Charge-density waves in
transition-metal compounds

At low temperatures some crystals undergo a phase transition
to a state in which the electron density displays periodic modulations

incommensurate with the crystal lattice.

Francis J. Di Salvo, Jr and T. Maurice Rice

The vast majority of compounds crystal-
lize into a regular form in which a unit cell
is repeated indefinitely, except for gen-
erally localized defects, impurities and
boundaries. In a few compounds, how-
ever, at sufficiently low temperatures in-
teractions between electrons and ions
across unit cells make this regular array
unstable with respect to small distortions.
The stable state is one in which the charge
density,1'2 the spin density,3 or the ion
positions4 display long-period modula-
tions. The period of these modulations
may be incommensurate with the spacing
of the underlying lattice, so that the ma-
terial is no longer truly periodic, having
two unrelated periods. In this article we
shall focus on charge-density waves, in
which the electron density and also the
ion positions exhibit a periodic varia-
tion.

One-dimensional waves
The idea that the electronic energy of

a metal could be lowered by a charge-
density wave was first put forward some
20 years ago by Rudolf Peierls5 and Her-
bert Frohlich.6 They considered the
special case of a one-dimensional metal,
in which the electrons are confined to
move only in one dimension by, for ex-
ample, confining them to a linear chain of
atoms; the Fermi surface then consists of
two parallel planes. A periodic lattice
modulation whose wave vector exactly
spans these two planes will couple elec-
tronic states across the Fermi surface
through the electron-ion interaction.
The additional periodic potential creates
an energy gap at the Fermi surface be-
cause electrons whose momenta satisfy
the Bragg condition scatter from the lat-
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tice modulation. Electron states below
the Fermi surface have their energy low-
ered, those above the Fermi surface are
raised. At low temperatures, then, nearly
all the states that are lowered are filled
while those that are raised are empty, and
the total energy of the distorted state is
lower in energy than the normal or un-
distorted state. In this way Peierls and
Frohlich showed that a one-dimensional
metal is inherently unstable against a
charge-density wave. Subsequent work
has shown that this instability is not re-
stricted to one-dimensional systems.
Albert Overhauser has suggested that the
Coulomb interaction between electrons
can also give rise to charge-density waves;
however, this does not appear to be an
important mechanism in the materials we
are discussing.

For some time these theories remained
a curiosity without experimental verifi-
cation. In the last decade, however,
charge-density waves have been observed
in a number of compounds, leading to a
renaissance of interest in the field. In the
box on page 35 we list some of these
compounds. Several have essentially
one-dimensional structures, such as po-
tassium cyanoplatinate, KCP for short,
while others (TaSe2, NbSe2, TaS2) are
approximately two dimensional. A large
class of organic compounds also display
charge-density waves at low tempera-
tures, but we will not discuss them here.

Putting aside the question of the mi-
croscopic origin of the instability for the
moment, we start by discussing the phe-
nomenon of charge-density waves in more
detail. Consider the case of a uniform
chain of atoms with spacing a. Suppose
that the charge density in the crystal is
given by

sinusoidally modulated, as shown in fig-
ure 1. The parameter p\ denotes the
amplitude of the charge modulation and
Q is its wave vector; the phase <p describes
the position of the charge density wave
relative to the ions of the underlying lat-
tice. For example, displacing the wave a
distance u is entirely equivalent to a
change in phase from <p to <p + Q-u.

The modulation of charge causes each
ion to see a different potential. The re-
sulting forces in turn cause each ion to be
displaced to a new equilibrium position.
The modulation of ionic displacements un
will have the form

un = UQ sin (nQa + <p) (2)

p(x) = (1)

that is, the electron density on each ion is

where n is an integer defining the position
of the ion. The amplitude u0 must of
course, be small compared to a if the
crystal is not to be disrupted. The ion
displacements are out of phase with the
electron density. To see why, note that
the force on an ion and hence its dis-
placement arises from a difference of the
charges on each side (for example, for an
ion at a maximum in the charge-density
wave the charge modulation is symmetric
on the left and right; it will experience no
net force and will not move).

The modulation of lattice sites may be
detected by electron, x-ray or neutron
diffraction. New diffraction satellites
appear separated from each Bragg vector
G of the underlying lattice by mQ where
m is an integer. The location of these
new satellites serves to determine the
period of the wave, 2ir/Q, and for small uo
the satellite intensity is proportional to
[(G + mQ) • uo)]2m. John Wilson, Frank
Di Salvo and Subash Mahajan, and C. B.
Scruby, P. M. Williams and G. S. Parry at
Imperial College, London, first observed
diffraction satellites from layered com-
pounds in an electron microscope and
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correlated their appearance with anom-
alies in various electronic properties,
which also appeared at low temperatures.
Figure 2 shows these new electron-dif-
fraction spots. R. Comes, M. Lambert,
H. Launois and H. R. Zeller observed
similar diffraction satellites in the one-
dimensional compound KCP by x-ray
diffraction methods.

From these initial electron-diffraction
experiments it appeared that the mate-
rials undergo phase transitions as the
temperature is lowered, with the low-
temperature phase exhibiting a charge-
density wave. However, the multiple
scattering of electrons makes it difficult
to determine the amplitude of the wave
from the scattered intensities, even
though the electron diffraction itself is
sensitive to very small displacements. By
contrast, neutrons and x-rays scatter only
weakly from atoms, so that multiple
scattering is less of a problem; the scat-
tered amplitudes can thus readily be used
to determine the amplitude uo of the lat-
tice modulation. David Moncton, John
Axe and DiSalvo8 used neutron scattering
to study the 2H polymorph of tantalum
selenide. Their results show no satellites
in the diffraction pattern above an onset
temperature (To = 122 K in this case);
below that temperature the satellite in-
tensity rises abruptly and then levels off
at lower temperatures, as shown in figure
3. Other compounds exhibit a similar
behavior, but with different values of To-
In the layered compounds To ranges from
30 K to 600 K.

The data shown in figure 3 reflect an-
other interesting aspect of the charge-
density wave in 2H-TaSe2. The wave
vector Q of the distortion is commensu-
rate with the lattice at low temperatures,
having a value of one third the reciprocal
lattice vector, a*. At 90 K there is an
abrupt transition, shown in the figure as
a decrease in intensity, in which Q
changes from a*/3 to a*/3 + q. At To, q
is —0.02-a*/3, and as the temperature is
lowered the magnitude of q decreases,
dropping discontinuously to zero at 90
K.

When the charge-density wave is com-
mensurate, the distortion of charge and
atomic displacement simply gives the
crystal a larger unit cell. Specifically if Q
= a*/3, then the new unit cell is three
times the old unit cell and the crystal is
periodic. When Q is incommensurate no
unit cell can contain an exact period of
both the wave and the underlying crystal
structure. The material is no longer pe-
riodic; the whole sample is the unit cell.

Electron diffraction patterns from various
crystal polymorphs: (a) 1T-(Ta06Nb04)S2, (b)
4Hb-TaS2, (c) 1T-TaSe2. In each case the bright
central spots are due to Bragg scattering; in (a)
the streaks and the spots they connect are due
to an incommensurate wave; in the other pic-
tures the small satellites are due to commen-
surate charge-density waves. Figure 2

POSITION x

A charge-density wave in a one-dimensional metal. The graph shows the sinusoidally modulated
density of conduction electrons. The dots on the axis represent the ions. Forces due to the
nonuniform electron density distort the lattice slightly. Figure 1
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While these experiments were able to
show that the ions move, they did not di-
rectly show that the local charge at each
ion is modulated. To measure this local
charge one needs a probe sensitive to the
distribution of conduction electrons.
X-ray spectroscopy is such a probe, since
by measuring the absolute energy of a core
level it samples the local electronic envi-
ronment of the ion. Groups at Bell Labs
and IBM have used this technique to
show that in the IT polymorph of TaSe^
(To = 600 K) there is a modulation of
roughly one electronic charge per atom at
room temperature, as if different tanta-
lum ions had different valences ranging
between Ta5+ and Ta3+. At the same
temperature the largest displacement of
the ions is 0.23 A. (The Ta-Ta intralayer
spacing is 3.3 A.) Another probe that can
give information about electron densities
is nuclear magnetic resonance. The nu-
clear resonance frequency is determined
not only by the applied magnetic field but
also by the internal magnetic fields due to
the spin and orbital moments of the con-
duction electrons. These fields give rise
to a small shift in the resonance frequency
of each nucleus, called the Knight shift,
which is proportional to the conduction
electron density at each nucleus. Fur-
thermore, if the nuclear spin is greater
than V2, satellites may appear around the
main resonance due to the splitting of
nuclear quadrupole levels by local electric
fields. Eitan Ehrenfreund and Arthur
Gossard at Bell Labs and Fred Gamble,
then at Synvar, using Knight shift and
electronic data, estimated the charge
modulation, 2pi/p0, in the 2H polymorph
of NbSe to be about 10%. For 2H-NbSe,
the onset temperature is 33 K; it thus
appears that p\ scales with To.

The Landau theory

Second-order or weakly first-order
(small latent heat) phase transitions can
be usefully, though empirically, described
by the Landau theory.9 The key concept
in the theory is the existence of an "order
parameter" that vanishes for tempera-
tures above the phase transition temper-
ature. To and, in the case of a second-order
transition, grows smoothly from zero for
temperatures below To. In our case the
order1 parameter may be the conduction-
electron charge density itself or, equiva-
lently, the lattice distortion. A descrip-
tion of the charge-density wave must in-
clude not only its amplitude but also its
phase, and we therefore introduce a
complex order parameter ip based on the
charge density

Pi(r)cos(Q • r + <p) =
Re[^(r)exp(ia* • r/3)] (3)

For the materials we are considering, Q is
approximately a*/3, so that ^(r) will only
vary slowly in space.

Landau argued that the difference in
free energies between the normal (un-
distorted) and distorted states could be

0 0.5
NORMALIZED TEMPERATURE (T/To)

The intensity of a first-order diffraction satellite
in 2H-TaSe2 below the transition temperature as
observed by neutron diffraction. The dotted line
marks the transition from an incommensurate
to a commensurate wave. Figure 3

written as a power series in the order pa-
rameter, and because the magnitude of
the order parameter approaches zero as
the temperature approaches the transi-
tion temperature from below, only the
first few terms of the series need be re-
tained when T is near Tu. Further, only
those terms that are invariant under the
symmetry operations of the undistorted
crystal are nonzero. For charge-density
waves in 2H-TaSe2 the free energy dif-
ference, AF, between the normal and
distorted states is, according to these
rules,

AF = JcfV|a(T -

The coefficients a through d are phe-
nomenological constants. The first two
terms in this expansion can produce a
ground-state energy lower than the un-
distorted state (AF < 0) with \p ̂  0 if a
and b are positive and T < To. The third
term is minimized when the wave vector

is incommensurate (Q = a*/3 + q), while
the last term represents the energy gained
by making the wave commensurate (Q =
a*/3). The interplay of the last two terms
determines the nature and occurrence of
the commensurate-incommensurate
transition. Consider for example the two
simplest choices
• ^(r) = \p0 exp j(q • r + <p) which corre-
sponds to a simple incommensurate wave
with Q = a*/3 + q.
• l/'fr) = \pce

ilf which represents a com-
mensurate wave.
In both cases AF is minimized with re-
spect to the amplitude of the wave, \po or
\f/c,

 a n d the phase <p. In the former case
the free energy density is, for T < TQ

AF/V = aHT - To)
2/46

Note that the contributions to AF from
the last two terms both vanish, so that the
energy is independent of the choice of <p.
When the periods of the charge density
wave and the lattice are incommensurate
it does not matter where in the lattice the
wave sits.

In the commensurate case the last term
forces the choice cos3v? = ±1, and we say
that the phase is "pinned." In this case
the free energy difference takes on a more
complex form than for the incommensu-
rate waves. A comparison of the free
energies determines which phase is stable.
The phase transition is first order in this
model.

In their neutron-scattering studies of
2H-TaSe2 Moncton, Axe and DiSalvo
noticed that the incommensurate state
was modified by the appearance of har-
monics when the commensurate state was
approached. They pointed out that if the
order parameter is of the form

\Kr) = I/'U exp ;'(q-r + ip)
+ \pi exp [—2i(q-r + v?)]

the crystal can gain energy from the
lock-in term, even in the incommensurate
state; the transition to the commensurate
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Energy relations in the presence of charge-density waves, (a) In the presence of a lattice distortion
with wave vector 2/cF, the energy band develops a gap at the Fermi energy, tF. (b) At temperatures
above the transition temperature To the spectrum of acoustical-phonon frequencies u>, shows a
marked dip near 2kf. In a simple model the energy, ftco, decreases to zero at To\ the resulting static
lattice distortion is accompanied by the energy gap shown in graph (a). Figure 4
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state, however, remains first order. W. L.
McMillan9 realized that an even lower
free energy could be attained by allowing
a phase variation v?(r), which introduces
a large number of harmonics. Actually,
the problem in which only the phase
varies can be solved exactly; 30 years ago
F. C. Frank and J. H. van der Merwe10

obtained, in another context, a solution in
terms of incomplete elliptic functions.
The key feature of their solution is a
continuous transition to the commensu-
rate state; close to the transition there are
commensurate regions separated by re-
gions in which the phase varies rapidly
through 2 7r/3. McMillan introduced the
term "discommensuration" to describe
these "kinks" in the phase. The resulting
picture is of a continuous transition pro-
ceeding through a continuous decrease in
the number of discommensurations.
Including amplitude modulation and
dynamical effects does not change the
picture.1112 In 2H-TaSe2 there are,
however, three coexisting charge density
waves whose Q-vectors point at 120° with
respect to each other. The structure that
results is therefore periodic in several di-
rections, much like the three-dimensional
periodicity of the atoms in a crystal. In-
cluding the three wave vectors in the
model restores the first-order phase
transition.13

While the phase of a low-order com-
mensurate wave is readily locked into the
crystal lattice, it can be shown that the
strength of the lock-in term drops off ex-
ponentially with increasing size of the
superlattice unit cell. What then deter-
mines the phase of the incommensurate
charge density wave? Impurities couple
strongly to distortions in the charge dis-
tribution. Take, for example, an impu-
rity with an attractive potential. Clearly
it will be favorable to have one of the
maxima of the charge density coincide
with the impurity, and this leads to a lin-
ear coupling of the impurity to the phase
<p. This contrasts with the case of foreign
atoms in a crystal, which couple only to
the deformation or strain, which in turn
is determined by the derivative of the
phase. The analogy is rather that the
lattice acts as a substrate and one is
dealing with crystallization onto an im-
perfect substrate determined by the im-
purities. Yoseph Imry and Shang-Teng
Ma, at Brookhaven, and Lu Sham and
Bruce Patton, at La Jolla, showed that
such linear coupling in fact could destroy
the three-dimensional long-range order
associated with a charge-density wave. A
dimensional argument shows how this
comes about. Suppose that the length
scale for phase variation is L; the free
energy of a volume L3 then has two terms:
first, a repulsive term arising from the
positive gradient terms proportional to L;
second, impurities contribute an attrac-
tive term, but because one cannot adjust
the phase to take advantage of all im-
purities if they are randomly distributed,

the average coupling energy is propor-
tional to the square root of number of
impurities, or Llr>. Clearly, when the
energy is minimized by balancing these
two terms, the length scale of the short-

range order is also determined. This
argument applies as well in one and two
dimensions with the same result. All
these theories show that the local value of
the phase is pinned by impurities.

Compounds exhibiting charge-density waves

Charge-density waves have been observed
in both one- and two-dimensional struc-
tures.

The "two-dimensional" compounds have
the composition MX2, where M is vanadium,
niobium, or tantalum, and X is one of the
chalcogenides: sulfur, selenium, or telluri-
um. The atoms are strongly bonded into
layers three atoms thick, with a close-
packed sheet of M atoms (color) sandwiched
between two close-packed sheets of X
atoms (black).

The layers are weakly bonded to each other,
mainly through chalcogen-chalcogen van-
der-Waals interactions. Tantalum disulfide
has such a layered structure, and it can be
prepared in a number of polymorphs. These
polymorphs differ from each other in the
stacking arrangement of the layers and by
the metal coordination within a given layer.
The two observed coordinations are octa-
hedral, in which chalcogens alternate

and trigonal prismatic, in which the chalco-
gens are aligned above each other in each
layer.

The simplest polymorphs are the 1T, which
have one layer per unit cell, octahedral
coordination and overall trigonal symmetry,
such as 1T-TaS2; and the 2H, which have two
layers per unit cell, trigonal prismatic coor-
dination, and overall hexagonal symmetry,
such as 2H-TaS2- The designations, such
as 1T or 2H, of the polymorphs come from
the initial letters of the overall symmetry
classes.

The "one-dimensional" compounds have
a structure consisting of strings of electrically
conducting atoms or molecules (color),
separated by nonconducting ions or mole-
cules (black).

In some cases the "insulating" species are
also conducting but the wave function
overlap between the two different kinds of
molecules is very small. The structure
viewed along a string is

The region in the center may be filled with a
conducting chain or with some other ions or
molecules. An example of the latter is KCP
with bromine, K2Pt(CN)4 Br0 3-3H2O, where
the conducting chains are made of platinum
atoms, the insulating chains of potassium
and cyanide; bromine atoms fill the central
region. Some organic materials form
structures in which two different chains al-
ternate, so that the central region is filled
with a "conducting" linear molecule. With
some organic materials, both molecular
chains are conductors, and the insulation
between chains arises because their wave
functions do not overlap to any appreciable
extent. Niobium trichalcogenides, such as
NbSe3, have a similar structure, but overlap
of the atomic wave functions makes their
behavior more nearly two-dimensional.
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Fermi-surface nesting. Diagrams (a) and (b)
show sections of Fermi surfaces that are per-
fectly nested, spanned by the wave vectors
represented by arrows; such surfaces given rise
to divergent susceptibilities x(Q)- (C) A Fermi
surface that produces a large, but not divergent
susceptibility x(<7)- Figure 5

Can a charge-density wave be induced
to move and carry a current? This idea
goes back to some of the earliest work on
these states; indeed, Frohlich was trying
to construct a theory of superconductivity
based on charge-density waves in his early
papers on the subject. His argument
went as follows. At zero temperature the
presence of a periodic distortion in a
one-dimensional metal completely trun-
cates the Fermi surface and there are no
simple-particle states left. However, if
we move all the electrons, we end up
moving the charge-density wave itself and
do not lose the energy gained by forming
the wave. There is no barrier to moving
an incommensurate wave, so Frohlich
hoped that states with charge-density
waves would be highly conducting. Al-
ternatively, this conductivity can be un-
derstood as arising from collective modes
of the phase, known as "phasons," which
are just the vibrational modes of the dis-

torted charge distribution, that is, of the
charge-density wave itself. The long-
wavelength limit of the longitudinal
acoustic phonon mode describes the
translational degree of freedom of the
charge-density wave. However, as we
have seen, the phase is pinned by com-
mensurability with the lattice or by im-
purities and this implies a local restoring
force for the oscillations, or a barrier
against movement of the charge-density
wave. We are thus led to conclude that
the distorted state in a one-dimensional
system is insulating, not conducting. The
phase oscillations should show up as in-
frared-active low-lying modes, and indeed
infrared reflectivity studies of KCP by P.
Bruesch, S. Strassler and H. R. Zeller at
Brown-Boveri have shown these modes
unambiguously.

Actually the description we have given
is not complete, because when a charge-
density wave carries a current the asso-
ciated phase modulations will produce
localized charge accumulations, leading
to long-range forces in systems such as
KCP. Although these forces modify the
results, they do not change the basic
conclusions that impurities have a drastic
effect on conductivity in the distorted
state. Several groups have investigated
KCP with neutron-scattering methods
and have seen the effects of both long-
range forces and impurities.

Another issue now under active explo-
ration is the possibility that an electric
field may free the phase of a charge-den-
sity wave, so that the wave is no longer
pinned to the lattice. This "de-pinning"
would give rise to a non-linear current
response to the field. This mechanism
may be responsible for the large devia-
tions from Ohm's law that Nai-Phuan
Ong and P. Monceau observed in NbSen
at fields as low as 0.1 V/cm. Patrick Lee
and Maurice Rice at Bell Labs have esti-
mated the field required to de-pin an in-
commensurate charge-density wave from
impurity sites and found that it could be
this low.

Microscopic theories

Having discussed phenomenological
theories and the experimental observa-
tions of incommensurate lattice distor-
tions, let us now consider the microscopic
mechanisms responsible for charge-den-
sity waves. The simplest model is that
due originally to Peierlsr> and Frohlich,6

who considered noninteracting electrons
moving in the potential due to the ions in
a one-dimensional metal; the mean-field
approximation makes the problem readily
soluble. Although this approach leaves
out fluctuation effects that are important
in one dimension, it captures the essential
physics of higher-dimensional systems.

Electrons moving along a chain of
equally spaced atoms with wave number
k have an energy t{k). At zero tempera-
ture the states are filled up to the Fermi
energy, ty = t(ky) and are empty above

that level. Applying a periodic potential
with wave vector Q = 2kp creates a gap in
the energy spectrum at cp as shown in
figure 5(a), because the periodic potential
couples states at +kp and — kf in first
order. One way of producing such a po-
tential is by a periodic distortion of the
lattice, such as that given by equation 2.
The resulting electron density is modu-
lated as in equation 1. The states near
the gap below tp, which are pushed down
in energy, are occupied while those that
are raised are empty; the total electronic
energy is therefore lowered. If the elec-
tronic energy gain is larger than the po-
tential energy cost of the lattice distor-
tion, a charge-density wave will sponta-
neously appear. At zero temperature
such a distortion always occurs in a one-
dimensional system, no matter how weak
the electron-ion coupling. As the tem-
perature is increased, some electrons will
be thermally excited across the gap at tp,
thus reducing the electronic energy gained
by creating the distorted state. Finally,
the transition temperature TQ is reached,
where the gap closes entirely. The
mathematical structure is identical to the
familiar Bardeen-Cooper-Schrieffer
theory of superconductivity but was
worked out by Frohlich and G. C. Kuper15

some years earlier. For weak coupling the
energy gap obeys the BCS relation 2A =
3.5feBTn.

Above the transition temperature the
processes that give rise to the crystal and
charge distortion are still active. Al-
though they can no longer give rise to a
stable distortion of the lattice, they do
produce an anomaly in the behavior of
longitudinal acoustic phonons, called a
"giant Kohn anomaly," in that the energy
of the phonons shows a decrease as the
wave number is increased through 2kp.
The simple model outlined above predicts
that as the temperature is decreased to To
the phonon energy at 2kp decreases to
zero. Below To the phonon energy is zero
at 2/?p, and this phonon becomes "frozen
in" as a static distortion. In most sys-
tems, however, one finds experimentally
that the static distortion appears before
the phonon energy at 2kp has dropped all
the way to zero (this is called the "central
mode problem").

None of the materials studied to date
are truly one dimensional; they are bulk
three-dimensional crystals. However,
there are many materials with linear or
planar arrangements of molecules that
give rise to highly anisotropic behavior of
properties such as the electrical conduc-
tivity. In the "quasi-one-dimensional"
systems the conductivity in one direction
is typically 10:! to 105 times higher than in
perpendicular directions. In the
"quasi-two-dimensional" metallic layered
compounds the anisotropy is much
smaller; the conductivity parallel to the
layers is typically 30 times the perpen-
dicular conductivity. These systems have
a Fermi surface that reflects the one- or
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The electrical resistivity of several layered tantalum dichalcogenides shows anomalies due to
charge-density waves. Note the differences in behavior of the two polymorphs. Figure 6

two-dimensional character of the mate-
rial. A charge-density wave will most
likely occur in those cases where the shape
of the Fermi surface is such that many
states on the surface can be connected by
the same wave vector Q. In figures 6(a)
and (b) we show examples of such "nest-
ed" surfaces. A periodic distortion hav-
ing wave vector Q will then produce gaps
at the portions of the Fermi surface con-
nected ("spanned") by Q. If many states
are connected, the energy gained by
creating gaps at the Fermi surface may
overcome the potential energy cost of the
lattice distortion and the distortion will
be stable.

The nested Fermi surfaces that give rise
to stable lattice distortions also affect the
wave-vector dependence of the electric
susceptibility, x<Q>- In or>e dimension
X(q) diverges logarithmically at q = Q. If
the Fermi-surface nesting is not perfect,
as in figure 6(c), the susceptibility does
not diverge and a charge-density wave is
stable only if the electron-ion interaction
is large enough. That the Fermi-surface
shape is important in determining the
instability conditions was first shown by
W. M. Lomer for the case of chromium

metal, where the exchange interaction
dominates the electron-ion interaction
and leads to a spin-density wave.

The energy gap that gives rise to
charge-density waves will also produce
changes in all of the thermodynamic and
transport properties of the crystal at and
below To. Thus, for example, we would
predict that at To the specific heat has a
finite discontinuity whose magnitude is
influenced by fluctuations in the lattice
distortion. The electrical resistivity may
increase or decrease below To; on the one
hand, the effective carrier density is re-
duced by the gap, but on the other hand,
the scattering rate may be dramatically
changed by the elimination of some Fermi
surface sections. The magnetic suscep-
tibility should decrease below To, since
the gap will reduce the paramagnetic
Pauli susceptibility, which is proportional
to the density of conduction electron
states at the Fermi level.

The coherence length of a wave is
roughly the minimum length over which
its amplitude can vary appreciably. We
can estimate the magnitude of the co-
herence length £ of a charge-density wave
from the uncertainty principle as follows.

The range of momentum states (A/e) af-
fected by the wave is bounded by tp ± A,
where A is the energy of the gap intro-
duced by the charge density wave. If A
is small compared to the Fermi energy,
the range of affected states is proportional
to the gap—that is, we are approximating
the undistorted t(k) relationship with a
linear one. In that case

Ik/kp a AAF

so that the uncertainty in position is

The coherence length of the charge-den-
sity wave, or equivalently, Ak, can be ob-
served as the width of the Kohn anomaly
or of the peak in electric susceptibility.

If, as we assumed, A is much smaller
than (p, the coherence length is large
compared to Ilk p. Systems in which the
conduction electrons are free to move in
three dimensions are then adequately
described by a mean-field theory, and
fluctuations in the order parameter are
negligible. When the coherence length is
on the order of ftp the fluctuations are not
negligible even in three dimensions and
the theory becomes much more diffi-
cult.

Metallic layered compounds

As a concrete example we consider
some of the metallic layered compounds.
As we indicated earlier, the observed size
of the anomalies in the physical properties
or deviations from the behavior extrapo-
lated from above the transition temper-
ature increases with increasing To. The
2H polymorph of NbSes has the lowest
transition temperature (33 K) of these
compounds and the size of the anomalies
found here can be used to estimate the
anomalies expected in similar compounds.
The charge-density wave in 2H-NbSe2 is
always incommensurate; the wavelength8

is about 3% greater than three times the
Nb-Nb intralayer separation of 3.3 A. At
4.2 K the amplitude of the niobium lattice
distortion is only 0.05 A and, as we previ-
ously pointed out, the amplitude of the
charge-density wave 2pi/p() is about 10%.
The effect of this distortion on physical
properties is small. The resistivity in-
creases by approximately 5% over that
extrapolated from above To; the specific
heat shows a small peak at To with a
height of about 5% and an integrated en-
thalpy of about 2.0 joules/mole.

The physical properties of some layered
compounds with higher transition tem-
peratures become quite complicated. As
an example, consider the IT and 2H
polymorphs of TaS2 and TaSe2. We
show the electrical resistivity for current
parallel to the layers in figure 7. Both 2H
compounds show similar behavior, with
the resistivity decreasing rapidly below
the transition temperature. Note that
the resistivity above To is on the order of
10~4 ohm-cm, a point we discuss later.
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The properties of the IT polymorphs are
dramatically different from those of the
2H. For these, the transition tempera-
ture is around 600 K. The transitions to
the commensurate state are first-order
phase transitions and are accompanied by
large increases in resistivity. As can be
expected from the high transition tem-
peratures, the charge-density wave am-
plitude at 300 K and below is close to one
electron per atom.

Both IT polymorphs also exhibit in-
teresting properties that illustrate some
of the theoretical points we discussed
earlier. The Fermi surface of lT-TaS2 is
made up of sections similar to those
shown in figure 6(c), so that x(<?) is large
but does not diverge. As final evidence
that the wavelength is determined by the
Fermi surface, the magnitude of Q can be
changed by alloying with transition ele-
ments of different electron number, as in
lT-Tai-.vTi,S2.

The measured wavelength of the dis-
tortions in lT-TaSe2 is 12.2 A, very close
to that predicted by the band structure
calculations of, for example, L. F. Mat-
theiss.19 An interesting feature of 1T-
TaS2 is that it exhibits two phase transi-
tions below TQ before the commensurate
state is reached below 200 K. K. Naka-
nishi and H. Shiba were able to explain
this double transition within the Landau
theory.11

All the transition-metal compounds
that exhibit charge-density waves have
resistivities above To on the order of 10~4

ohm-cm or greater. This value is more
than two orders of magnitude larger than
that of copper metal at a similar temper-
ature. Such a large value of resistivity
means that the scattering times of the
conduction electrons are extremely short
(about 2 X 10~15 sec), or equivalently, the
mean free path is only a few atomic dis-
tances. Such values are characteristic of
transition-metal compounds with large
electron-phonon interactions, and
suggest that the incoherent electron-
phonon scattering rate determines the
energy scale in these materials. The large
amplitudes of the distortions in materials
such as lT-TaS2 and lT-TaSe2 also
suggest a strong coupling between elec-
trons and phonons. Current theories
apply to the charge-density waves in
metals with weak coupling and special
Fermi surfaces, and a complete strong-
coupling theory has yet to be developed.

As William McMillan pointed out,21

the layered compounds, even those with
moderate transition temperatures such as
2H-TaSe2, have short coherence lengths.
A variety of experiments including the
width of the anomaly in the acoustic
phonon branch and the large fluctuation
contribution to the specific heat near To
show22 that £ in 2H-TaSe2 is only about 5
A. Such a short coherence length means
that the simple models we discussed pre-
viously will not be adequate to explain the
observed behavior fully. In particular,

the transition temperature and the ther-
modynamic behavior will not be deter-
mined simply by electron excitation
across the gap associated with a charge-
density wave. Changes in the phonon
entropy will make an important contri-
bution to the free energy, because a large
portion of the longitudinal acoustical-
phonon branch of width approximately
l/£ is affected by the lattice distortion.

The concept of a lattice of electrons is
an old one, dating back to Eugene Wig-
ner's classic paper on the electron gas in
1934. While the models discussed here
differ in several ways from Wigner's ideas,
the charge-density waves are in essence
charged lattices that form with their own
period inside certain crystals. They are
a lattice within a lattice, and the study of
their dynamics and motion is an intrigu-
ing problem for the future.
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