
Unitary field theories
Much of Einstein's life was devoted to searching
for a theory that incorporates gravity
and other fields into a generalized geometrical
structure derived from the general theory of relativity.

Peter G. Bergmann

General relativity interprets gravitational fields as arising from a curvature in space-time, given by
a tensor Rik, as Einstein is discussing in this 1931 lecture. (Photo from Brown Brothers.)

The spirit that motivated Galileo, New-
ton, Einstein and Bohr to strive to un-
derstand nature by tracing unifying
principles that underlie the diversity of
physical phenomena is the motivating
force behind unitary field theories. In its
earlier stages, in the absence of physical
facts that could have given it direction,
the quest for unitary field theories was
stimulated primarily by geometric no-
tions. In recent years quantum physics
and elementary-particle theory have
suggested new directions, some of which
may be successful. Before we discuss
these recent developments, let us review
some of the background.

Preliminaries
In the years after Hermann Minkow-

ski's geometric interpretation of the spe-
cial theory of relativity,1 the relationship
between physical force fields and space-
time appeared straightforward. Particles
would trace out trajectories—curves—in
the four-dimensional space-time con-
tinuum, and fields were to be understood
as collections of functions of the four
space-time coordinates, say x, y, z and t.
Space-time itself was endowed with an
immutable structure, the Minkowski
metric, which assigned to each pair of
points in space-time ("events," localized
both in space and in time) an "interval,"
independent of the choice of Lorentz
coordinates.

A physical theory is Lorentz-invariant
(or Poincare-invariant, in the terminology
used now) if the dynamical laws, pre-
sumably sets of differential equations,
take the same form in all possible Lorentz
coordinate systems. The Lorentz trans-
formations, or Poincare transformations,
are defined as transitions between any
two four-dimensional coordinate systems
in which the mathematical form of the
interval takes the standard form

r2 = c2At2 - (Ax2 + Ay2 + Az2) (1)

With the advent of the general theory of
relativity in 1916,2 the relationship be-
tween the structure of space-time and the
physical fields changed profoundly. In
particular, the clear distinction that one
could previously make between the ge-
ometry of space-time in which the parti-
cles move and the fields that affect the
motion of particles became much less
clear. The physical basis for the change
was the fact that in the presence of grav-
itational fields all ponderable bodies that
are electrically and magnetically neutral
follow trajectories that depend only on
initial location and state of motion and
not on masses of the bodies (the "princi-
ple of equivalence"). Einstein recognized
that this principle would affect the
physical definition or interpretation of the
space-time geometry. Locally, at least,
the variety of possible trajectories in a
gravitational field resembled the variety
of trajectories postulated by Newton's
Law of Inertia in the absence of forces;
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that principle asserts that in a force-free
situation trajectories are straight lines,
traveled at a uniform speed. But whereas
in Newtonian physics, and in Einstein-
Minkowski physics as well, the four-
dimensional coordinate systems (the
frames of reference) in which the law of
inertia is valid are defined throughout the
physical universe, coordinate systems in
which the trajectories of free-falling
bodies are straight lines could now be
constructed only in the vicinity of a point.
Such local frames might be termed free-
falling frames of reference. Any attempt
to connect them, into a single inertial
frame of reference is bound to fail; it was
precisely that failure which was to dis-
tinguish a gravitational field from a
space-time from which gravity was ab-
sent.

The idea that global inertial frames of
reference must be replaced by free-falling
frames only locally defined lies at the root
of the general theory of relativity. In that
theory, too, there is an interval, but it is
defined only for infinitesimally distant
pairs of points,

r2= E t ,dx»dx" (2)

The coefficients g^ are not constants, but
are themselves fields, functions of the
space-time coordinates. The coordi-
nates, too, are much more flexible than
are those in the special theory of relativi-
ty. There is no analog to the Poincare
transformations. Rather, all that is re-
quired of a coordinate system, and of its
relationship to another coordinate system,
is a unique, continuous and differentiable
relation to the points that make up the
space-time continuum.

The metric coefficients gM1, that appear
in equation 2 are fields. Their depen-
dence on the four space-time coordinates
describes the intrinsic geometric proper-
ties of the space-time continuum. By a
mathematical analysis one can determine,
for instance, that in a certain field iden-
tified physically with that corresponding
to a single mass (the Schwarzschild field)
the most nearly straight curves existing
(the geodesies) are closed in space (helices
in space-time), and are approximately
elliptical. Thus, the coefficients gM1, are
also potential functions of a physical field,
the gravitational field. This double role
of the g^,, to describe geometry and to be
physical potentials, is the crucial formal
characteristic of the general theory of
relativity.

Einstein2 formulated the differential
equations that represent the dynamical
law of gravitation, corresponding in effect
to Newton's inverse-square law of gravi-
tation. In general relativity the dynam-
ical law must take the same form in any
chosen four-dimensional coordinate sys-
tem; it must be generally covariant. The
field equations are highly non-linear
partial differential equations of the sec-
ond order, whose variables are precisely

Valentin Bargmann, Einstein, and Peter Bergmann walking on the Princeton campus. They col-
laborated on several papers on unitary field theories. (Photograph copyright by Lucien Aigner.)
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the metric coefficients £,,„.
The sources of the gravitational field

are masses, mass flux, and stress; the
analogous sources for the electromagnetic
field, are the electric charge and current.
All physical fields other than the gravi-
tational field itself contribute to the
sources of the gravitational field, and thus
they appear on the right-hand side of
Einstein's field equations. In turn, the
laws of all physical fields contain as coef-
ficients the gravitational potentials gM1,.
Thus gravitational and non-gravitational
fields interact with each other—they are
coupled. Nevertheless, they enter into
the scheme of the theory in a non-sym-
metric fashion. The coupling between
the gravitational and all other fields
implies that, because the gravitational
field equations are not linear, no linear
law can be generally covariant.

The gravitational field is the only
physical field that in the general theory of
relativity directly relates to the geometric
structure of space-time. All the other
physical fields do so only indirectly,
through their linkage to the gravitational
field. The physical justification for this
lack of symmetry is that particles obey
laws of motion independent of their own
characteristics (that is, travel on geodes-
ies) only if they are not coupled, through

Peter G. Bergmann is professor of physics at
Syracuse University.

Hermann Weyl made many
contributions to mathematical

physics, including a generalization of
Riemannian geometry. (Sketch by

Elizabeth P. Korn.)

electric charges or otherwise, to non-gra-
vitational fields. It must be admitted
that this distinction is to some extent
circular.

In the argument just presented it is
taken for granted that the geometry of
space-time is described by equation 2.
The pre-eminent role of the gravitational
field among all physical fields is then de-
duced from the appearance of the gravi-
tational potentials alone in equation 2.
Presumably, a different definition of what
is to be understood by the term "geometry
of space-time" might lead to different
results. There remains one point that
distinguishes the gravitational field from
all others. If a particle's mass is consid-
ered its coupling parameter to the gravi-
tational field, just as its electric charge is
its coupling parameter to the electro-
magnetic field, then of all the conceivable
coupling parameters mass is the one that
has no kinematic effect on a particle's
motion. Particles of different masses
travel on the same trajectories in a gravi-
tational field, whereas particles with dif-
ferent electric charges travel on distinct
trajectories in an electromagnetic field.
Even this assertion must be qualified, in
that particles with different charges will
travel on identical trajectories if their

respective charge-to-mass ratios {elm) are
equal.

Almost from the inception of the gen-
eral theory of relativity there have been
attempts to construct theories in which
gravitational and non-gravitational fields
would assume similar roles, where all
physical fields would lend themselves to
a geometric interpretation. Moreover, it
was hoped that such theoretical con-
structions would lead to a "unification" of
all physical fields. Hence such theoreti-
cal constructions were termed unified or
unitary field theories. Einstein himself
searched untiringly for a truly satisfactory
field theory, from the early 1920's to the
end of his life. In the course of his en-
deavors, and those of many others, the
meanings of the terms "geometry" and
"unification" have undergone many
subtle variations.

Manifolds

One concept that underlies many for-
mulations of what is "geometry" is that of
a manifold. In topology, a manifold is an
infinite set of elements, called points, that
has many of the local properties of an or-
dinary n -dimensional space. The points
of a manifold can be identified with n-
tuplets of real numbers, their coordinate
values, so that points whose coordinate
values differ by small numerical values
are in each others' neighborhoods. It may
not be possible to use a single coordinate
system for the whole manifold; but it
should be possible to cover a manifold by
overlapping "patches" of coordinate sys-
tems. For instance, the surface of a
sphere is a two-dimensional manifold.
There is no way to cover the whole sphere
with a non-singular coordinate system,
but one can construct two patches, one
perhaps centered on the north pole, the
other on the south pole, and both ex-
tending beyond the equator. There will
be a region of overlap, in the topics; within
the overlap region each point may be
identified either by means of the North-
ern or the Southern coordinates. (Inci-
dentally, the usual coordinates of geo-
graphic latitude and longitude break
down at the poles, in that a pole corre-
sponds to an infinite set of longitudinal
coordinates.)

A manifold is far from being the most
general model of a topological space, but
it is sufficiently close to what one con-
ceives of intuitively as a space so as to be
both popular and useful. A manifold may
possess all kinds of special structures that
represent its "geometric" properties.

An example of such a structure is a
metric, which assigns to curve segments
arc lengths, such as suggested by equa-
tions 1 and 2. In all differentiable man-
ifolds (manifolds in which the overlapping
coordinate patches can be chosen so as to
have differentiable transition equations)
we may construct fields of vectors. The
vectors at each point represent the tan-
gents of curves passing through that
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Bergmann and Einstein working in Einstein's study at Princeton in early 1938, when they were
actively engaged in attempts at constructing unitary field fheories. (Photo by Lotte Jacobi.)

point. A metric endows every vector with
a norm, which is a quadratic function of
the vector components. General rela-
tivity, one might say, is based on a
space-time manifold endowed with a
metric. A manifold with a metric struc-
ture is known as a Riemannian mani-
fold.

Given the existence of vectors at every
point of a manifold, there is, a priori, no
relation between the vectors at neigh-
boring points, but such a relationship can
be postulated. One might arbitrarily
designate a particular vector at one point
as the vector "corresponding" to a given
vector at a neighboring point. There are
certain reasonable conditions to be im-
posed on such a designation, the most
important being that the designation of
corresponding, or parallel, vectors should
be compatible with the law of vector ad-
dition. Once the rule of correspondence
has been introduced for vectors at nearby
points, it can be applied for continuous
progression along a curve, approximating
the curve by point-to-point polygonal
progression. If a manifold is to possess
both a metric and a method for relating
vectors at nearby points to each other (an
affine connection), the two structures can
be related to each other by requiring that
the norms of two corresponding vectors
have the same values.

What happens if a vector is displaced
according to the adopted rule of corre-
spondence along a closed curve, one that

returns to the initial location? In general
the resulting vector is not identical with
the initial vector; one speaks of the non-
integrability of the affine connection,
measured by the (affine) curvature.
Metric and affine connection are exam-
ples of the geometric structures that one
can postulate on a manifold. There are
many others that have been considered by
geometers, such as the symplectic struc-
ture of phase spaces that play such an
important role in Hamiltonian mechanics.
Obviously, there may be promising
structures that nobody has yet thought
about. Most unitary field theories pos-
tulate structures that, for one reason or
another, are believed to lend themselves
to physical interpretation.

Fiber bundles

Many types of geometric structure can
be described as fiber bundles. Fiber
bundles have become popular among
some physicists through their use in a
discussion of isotopic spin by Chen Ning
Yang and Robert L. Mills more than
twenty years ago,3 though they had been
well known in mathematics long before.
Given a manifold, such as space-time,
called the base manifold, one attaches
new manifolds to each point. These at-
tached manifolds, all identical, are the
fibers. They may have any dimension-
ality, not necessarily that of the base
manifold. Each fiber can be subjected to
mappings, or transformations on itself,

which maintain the fiber's essential
properties. As a case in point, in a metric
manifold one may construct at each point
a set of mutually perpendicular unit vec-
tors; these might serve as the basis for all
vectors at that point. This basis set can
be rotated at each point, leading to map-
pings of each of these vector spaces on it-
self. Given a fiber and its permitted
self-mappings, one may introduce a con-
nection that establishes "corresponding"
points on fibers at nearby points. Again,
this connection will in general not be in-
tegrable.

A well-known fiber bundle in quantum
mechanics is presented by the wave
function defined on configuration space
as the base manifold. The fiber consists
of all complex values that the wave func-
tion may have at one point. As only the
absolute square of the wave function has
direct physical significance, one may
multiply the wave function by an arbi-
trary complex factor of magnitude unity
and choose this factor differently at dif-
ferent points. However, as phase rela-
tions play a role, for instance in the con-
struction of canonical momentum oper-
ators, it is desirable to establish a rule by
which "the same phase" is recognized at
neighboring points. This rule must be of
the form

+ ^A: = 0

34/
—
ot

(3)

for the wave function of an electrically
charged particle, where A and $ are the
vector and the scalar potentials, respec-
tively. If the wave function is to be mul-
tiplied by a factor exp(iQ/h), then A and
4> must be changed by the appropriate
amounts,

A' = A + -VQ
e

e dt

(4)

for equation 3 to remain valid. In this
case the electromagnetic potentials rep-
resent the appropriate connection, and
the gauge transformation (equation 4)
shows how the connection must be
changed if each fiber is mapped on itself
by one of the permissible changes.

We will briefly describe two of the his-
toric unitary field theories, one proposed
by Hermann Weyl,4 the other by Theodor
Kaluza,5 and then present a third, "su-
pergravity," which currently is very much
in the limelight.

Weyl's conformal geometry

Weyl proposed to change the metric
structure of space-time to one known as
conformal. Instead of every vector pos-
sessing a norm, in Weyl's geometry only
the ratio between the norms of two vec-
tors (at the same point of the space-time
manifold) is assumed to have an absolute
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value. If in Riemannian geometry the set
of mutually perpendicular vectors at each
point can be rotated at will, then in Weyl's
geometry it can also be enlarged or re-
duced by an arbitrary factor. As a result,
the affine connection of Riemannian ge-
ometry must be enriched by an extra rule
that tells when two vectors at neighboring
points have equal lengths (though the
lengths themselves are not determinable).
This extra affine structure was inter-
preted by Weyl as the electromagnetic
potentials, long before these potentials
were postulated to be the connection re-
quired by the indeterminate phase of the
wave function of quantum theory.

As a generalization of Riemannian ge-
ometry Weyl's construction is at least
mathematically attractive. Maxwell's
equations of the electromagnetic field can
be stated against the background of a
Weyl geometry. On the other hand, those
of particle fields with nonvanishing rest
mass can not. That the affine geometry
did not survive among physicists is be-
cause of the fact that stable particles have
definite masses, and hence definite
Compton wavelengths. The four-di-
mensional wave proportional to its rela-
tivistic linear momentum and its relativ-
istic mass, respectively, thus has a norm
proportional to the square of the mass,
which can be used as a standard
throughout the physical universe, a
standard against which all vectors can be
evaluated. Weyl's postulate of non-ab-
solute norm thus appears to contradict
what we encounter in nature.

It is perhaps remarkable that the elec-
tromagnetic potentials appear in Weyl's
geometry as the connection for the
transfer of the norm (or magnitude) of a
vector, in the absence of any relation to
the wave functions of quantum physics.
The formal aspect that provides the
analogy is that in both cases the degree of
arbitrariness in the description of a geo-
metric structure is a real scalar. In
Weyl's geometry that scalar is the choice
of norm of a vector, in wave mechanics it
is the choice of the real variable Q in the
transformation

\p \X) — 6 ^ y\X) (0)

of the wave function. Either way, the
change in the connection (which must be
a four-vector) is the addition of a (four-
dimensional) gradient, just what is now
called a gauge transformation of the
electromagnetic potentials. Incidentally,
the term "gauge transformation," now
commonplace in electrodynamics, is due
to Weyl, who spoke of the re-gauging of a
vector norm.

In Weyl's geometry the "fiber" erected
over each point of space-time consists of
all tetrads of mutually perpendicular
vectors of equal lengths, and the permis-
sible mappings of a fiber on itself are
composed of Lorentz rotations and dila-
tions. This set of mappings forms a
group, to be sure, but not a "simple"

group; the term "simple" applied to a
group implies that the group cannot be
decomposed further into a (semi-direct)
product of smaller groups that is pre-
served under the actions of the group it-
self. The group of Weyl permits such a
decomposition: the Lorentz rotations of
determinant unity, which in current
notation are often designated by the
symbol SO(3,1), and the isotopic dilata-
tions. As a result of this group-theoreti-
cal decomposability of the group of fiber
mappings, t ê connections also split, and
the "unification" of gravitation and
electromagnetism is partly illusory.

Kaluza's five-dimensional theory

Kaluza's attempt at unification has also
considerable historical interest. Kaluza
introduced a five-dimensional manifold
that was to take the place of four-dimen-
sional space-time, and endowed it with a
five-dimensional metric. ' Four dimen-
sions were to be space-like, one time-like.
To account for the observed four-dimen-
sionality of space-time, Kaluza intro-
duced a congruence of space-like curves,
so that through each point of his manifold
one, and only one of his curves should
pass. All points along one curve should
be equivalent in every respect, so that the
richness of his geometric structure could
be sampled completely along any four-
dimensional hyper-surface that would
intersect each of the curves.

the original curve of Kaluza one will dis-
cover that it is now intersected at a dif-
ferent point.

This implies, of course, that given two
of Kaluza's curves, their distance from
each other is constant up and down the
curves. These distances are interpreted
as the metric of the physical four-dimen-
sional space-time. Any of the intersect-
ing four-dimensional hypersurfaces may
be accepted as a model of space-time.
But though rigid sliding up or down would
by assumption have no effect on the in-
ternal structure of such a hypersurface,
the local angles of intersection with the
curves would. If one could construct a
hypersurface that is everywhere perpen-
dicular to the curves, that would be a
natural choice, but in general one cannot
do that. Consider any closed curve and
then slide the points of intersection with
the curves of Kaluza up or down to make
the closed curve everywhere perpendic-
ular to Kaluza's curves. On returning to

\

1 1 1 1

The non-existence of a perpendicular
hypersurface represents a twist of the
congruence of the curves of Kaluza, which
has the same formal properties as the
electromagnetic field. Again, one can go
over to the language of fiber bundles and
interpret Kaluza's five-dimensional
manifold as a bundle whose base manifold
is space-time and whose fibers are one- i
dimensional. Each fiber can be mapped I
on itself by translation. The "connec-
tion" is the assignment of a point on a
neighboring fiber that is reached by travel
at right angles to the fibers, and this
connection is non-integrable.

There is a scalar in Kaluza's geometric
construction, which was originally a j
source of embarrassment. If a four- '
dimensional hyper-surface is slid "rigidly"
along Kaluza's curves, the displacements
along the various curves must be related
to each other. In terms of the five-di-
mensional metric the magnitudes of the
displacements need not be equal to each
other, and their ratios constitute an in-
trinsic scalar field. As he could not see
any physical interpretation for this scalar,
Kaluza simply set it equal to unity, and
thus in effect eliminated it. Later on, a
number of different investigators, most
recently Carl Brans and Robert Dicke,6

capitalized on precisely this scalar field
and attempted to give it a role in cosmol-
ogy. They called this proposal the sca-
lar-tensor theory. Though a very rea-
sonable extension of Kaluza's original
proposal, the scalar-tensor theory is not
favored by present observational evi-
dence. Nevertheless, it should, in my
opinion, not yet be discarded, as the evi-
dence is at the frontiers of present tech-
nology, and there may be alternative ways
for incorporating a scalar into a unitary
field theory. From a theoretical point of
view it should be emphasized that, just as
in Weyl's geometry, Kaluza's construc-
tion, and its subsequent modifications,
does not accomplish a real unification.

Another generalization of Kaluza's
five-dimensional approach was explored
by Einstein, Valentin Bargmann, and
myself.7 We replaced the requirement of
perfect equivalence of points along his
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His office at Princeton in April, 1955 after Einstein left it for the last time. In pain, he went to the
hospital and died a few days later in his sleep, of a burst aneurism. The equations on the blackboard
refer to his continuing work on unitary field theories. (Photo by Alan Richards.)

special curves by the less restrictive as-
sumption that the five-dimensional uni-
verse was closed in the fifth direction,
with a circumference of subatomic mag-
nitude. The five-dimensional manifold
would thus have the appearance of a thin
tube. Fields would not be constant
around the tube, but would be free to
vary, with a periodicity that would cor-
respond to the tube's circumference. We
hoped at the time that the periodicity
might account for quantum phenomena;
but it turned out that the resemblance
was at best superficial, and we eventually
discontinued these efforts.

Supersymmetry and supergravity

An entirely new approach to unitary
field theories is afforded by the so-called
supersymmetry theories. These theories
take their physical motivation from the
fact that all known particles in Nature
belong to one of two classes. Particles
having an integral spin are bosons, whose
with odd half-integer spin are fermions.
Fermions satisfy Pauli's exclusion prin-
ciple, which is to say that no two fermions
of the same kind can have all quantum
numbers the same. The electrons con-
tained, for instance, in an atom or a crys-
tal cannot all crowd into the lowest energy
state, but must distribute themselves in
such a manner that each state is either
empty or occupied by a single electron.
Bosons are not constrained in this way.
An arbitrarily large number of photons

can, for example, be found in any one
mode of, say, a beam of light. The idea of
supersymmetry is to permit transforma-
tions in which bosons and fermions are
converted into each other; its motivation
is the existence of supermultiplets among
elementary particles in which particles of
different spin are grouped together.

In systems with many identical parti-
cles it is convenient to introduce a for-
malism, often referred to as field quanti-
zation, in which the actual number of
particles of a given species can be changed
by operators that are known as creation
and annihilation operators. As their
names imply, these operators act on the
state vector of a quantum system to con-
vert it into one in which there is one par-
ticle more, or one particle less, than be-
fore. There must be one creation opera-
tor and one annihilation operator for
every possible quantum state. In fer-
mions it is impossible either to create or
to annihilate two identical particles in the
same quantum state; hence the square of
each such operator must vanish. They
are nilpotent. Moreover, it can be shown
that any two distinct fermion annihilation
operators must anticommute. This is, for
any two such operators, say a*, and a/,

formed by addition and multiplication in
general possess no reciprocals, although
they will if the polynomial formed from
the anticommuting operators also con-
tains a nonvanishing ordinary number
term. For instance, the reciprocal of (1 +
at;) is (1 — ctk), as the reader can easily
verify. (Note that ak

2 = 0.) Algebras
formed from ordinary numbers, anti-
commuting quantities, and their powers
are called Grassmann algebras. It is easy
to verify that odd products of anticom-
muting numbers also anticommute with
each other, for example,

One can form a complete algebraic system
of operators that obey such anticommu-
tation laws, except that, because of their
nilpotence, combinations of the a/,'s

whereas even products commute with
each other, and with odd products.
Nevertheless, even products of a^'s are
not ordinary numbers, they are nilpo-
tent.

In supersymmetries one introduces side
by side integral-spin fields composed of
commuting (thought not necessarily or-
dinary) numbers and half-odd-spin fields
whose components are anticommuting.
It is assumed that they obey field laws
that are Poincare-invariant. On top of
these assumptions one introduces the
notion of supersymmetry, invariance with
respect to transformations generated
themselves by anticommuting operators,
which carry fermion fields into boson
fields and vice versa. Julius Wess and
Bruno Zumino8 were among the first to
construct such a theory.

Supersymmetry transformations are
remarkable in that they also act on the
coordinates of space-time (which in the
original supersymmetry theories was as-
sumed to be the Minkowski universe). In
fact, the commutator of two supergauge
transformations seems to behave as a
translation, which, however, differs from
an ordinary translation in that the change
in the coordinates of a point of space-time
is nilpotent. The generator of these
"translations," which should behave as
the total linear momentum of the physical
system, cannot be an ordinary quantity,
either.

From supersymmetry to supergravity9

is a step that is closely patterned on the
experience gained with fiber-bundle for-
malisms: Instead of having a single su-
persymmetry transformation throughout
space-time, one introduces local trans-
formations, called supergauge transfor-
mations; they map a rather complicated
fiber on itself. There is need for a con-
nection, which has both fermion and
boson components. Any "superfield"
that is introduced as the carrier of physics
will consist of both boson and fermion
components, which under supergauge
transformations change into each other.

Supergravity theories are truly unified
in the sense that the fields that occur in
them cannot be decomposed invariantly.
In any chosen supergauge frame they will
decompose, but that decomposition is not

50 PHYSICS TODAY / MARCH 1979



left intact by supergauge transformations.
The groups that have been considered in
supersymmetry supergravity theories are
simple groups, the so-called graded Lie
groups. In some theories the funda-
mental symmetry group can be chosen so
as to contain as subgroups those that are
important in elementary-particle phys-
ics.

The Grassmann numbers that occur in
both supersymmetry and supergravity
theories are difficult to interpret. They
assume at least some of the roles of ordi-
nary numbers, serving, for example, as
coordinates of points. In quantum
physics we have learned how to obtain
from operators ordinary numbers that are
the expectation values of the physical
quantities represented by these operators.
A corresponding algorithm for the
Grassmann quantities of supersymmetry
and supergravity does not as yet exist. It
is conceivable that such an algorithm will
be forthcoming once the theories have
been fully quantized. For the time being,
supersymmetry and supergravity theories
have so many attractive aspects, and are
of such recent origin, that one ought not
to abandon them just because right now
their physical interpretation leaves much
to be desired. Neither should one disre-
gard the fact that in many respects these
theories have remained fragmentary.
The next few years will probably teach us
much that should lead to a definitive
evaluation.
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For magneto-optical studies:
a new superconducting
magnet from IGC

Intermagnetics General Corporation, an independent affiliate
of General Electric Company, offers high performance Nb3Sn
superconducting magnets for magneto-optical studies with a
combination of the following features:

• Ultrahigh fields (to 150 kG)
• Split configuration
• High homogeneity
• Good radial access
9 Vacuum bore

Working space within the magnet can be accessed either
through the midplane of the magnet or through the bore.
The split configuration is well suited for many applications
including Raman spin flip scattering and neutron diffraction
studies. And samples may be maintained under vacuum at
4.2K, or in helium gas at any controlled temperature between
2K and 300K.

Whatever your requirements — superconducting materials,
magnets of split configuration for optical studies, or complete
turnkey systems — rely on the one company with across-the-
board capability... Intermagnetics General Corporation.

For further information, write or call: Paul Swartz,
Vice President of Marketing and Sales, Intermagnetics General
Corporation, Charles Industrial Park, New Karner Road,
Guilderland, N.Y. 12084, Phone 518/456-5456.
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