
Fast UV Detectors

Suitable for experiments in Plasma Research, Fusion. Fast UV Lasers, Cerenkov Radiation Detection, Short-lived Free Radicals, etc. All types can be used in the single photo-electron mode.

Typical specifications

Gain: 106 at 2300 volts for cesiated types Rise time: 3 nanoseconds Cathode Diameter: 0.625 inches Window Material: MgF2 is standard.

CaF2, LiF, and fused silica on special order

Cathode types: Csl, CsTe, RbTe, KBr, Bialkali, and S-20.

Power supplies and housings with vacuum coupling flanges and RFI shielding are available for all types.

For further information contact:

EMI GENCOM INC.

80 Express St., Plainview, NY 11803 • 516-433-5900 TWX 510-221-1889

Circle No. 30 on Reader Service Card

PRA's high intensity pulsed light sources.

The PRA 610 microsecond pulsed light sources offer maximum versatility for applications requiring high ultraviolet intensities.

- Discharge energy per pulse to 100 joules
- Repetition rate 1 to 100 pps
- Spectral range 200 nm to 1200 nm with peak intensities
- Various pulse widths 1.5-50 µ sec.
 Non magnetic lens aperture for ESR/NMR applications
- Carefully designed for minimized RFI

PRA manufactures pulsed light sources with a variety of pulse widths and discharge energies and has people with broad experience in optical systems design to advise you.

Photochemical Research Associates Inc.

45 Meg Drive, London, Ontario Canada N6E 2V2 (519) 686-2950 Telex 064-7597

Circle No. 31 on Reader Service Card

Porter and Casale are satisfied with presenting an abstract of the literature rather than an analysis, digest or integration.

> FREDERICK R. EIRICH Department of Chemistry Polytechnic Institute of New York

book notes

Aspects of biophysics. W. Hughes. 362 pp. Wiley, New York, 1979. \$18.95

William Hughes's new biophysics text is directed towards those "who have a basic knowledge of physics, chemistry and biology and who wish to see how some of the more elementary parts of physics may be applied to the study of living matter.' He has organized the book according to biological systems of increasing complexity, beginning with molecules and proceeding to organelles, cells, tissues and so forth. The first two chapters discuss the physical aspects of biological macromolecules and the various techniques for their study. Hughes then introduces some elementary concepts for describing the behavior and properties of macromolecules, following this with two chapters devoted to enzymes and nuclei acids. After considering cell membranes and nerve impulses the author then provides an introduction to artificial membranes. Chapter 9 is concerned with energy transduction and chapter 10 discusses the basic ideas behind radiation effects. The next five chapters describe salt and water transport in the gut, the behavior of striated muscle, blood flow and heart action and the physical aspects of vision and hearing. Hughes finishes up with a discussion of the origin of living matter and a review of developments in bioengineering.

Magnetic Properties of Coordination and **Organometallic Transition Metal** Compounds, Vol. 10, Supplement 2 (Landolt-Börnstein). E. König, G. König. 982 pp. Springer, New York, 1979.

This is the second supplementary volume in the Landolt-Börnstein series on magnetic susceptibilities and electron spin resonance of coordination and organometallic transition metal compounds. The first part of this reference work complements and extends the collection of magnetic-susceptibility information for the aforementioned compounds, which was presented in volumes 2 and 8. The authors review the data published in 1969 and 1970 in this supplement.

Most of the magnetic susceptibility data refer to a limited temperature range (often between 77 and 300 K), however, König and König also list the results of susceptibility studies that extend over a larger temperature range. Studies of magnetic anisotropies and of principle magnetic susceptibilities, though limited in number, are reported in the form of special inserts.

new books

Particles, Nuclei and **High-Energy Physics**

Quantum Chromodynamics (Lectures presented at a wrkshp., La Jolla, Cal., August 1978). W. Frazer, F. Henyey, eds. 340 pp. Amer. Inst. of Phys., New York, 1979.

Particle and Nuclear Physics, Vol. 2. Sir Denys Wilkinson, ed. 293 pp. Pergamon, Elmsford, N.Y., 1979. \$50.00

The Forces of Nature. P. C. W. Davies. 254 pp. Cambridge U., New York, 1979. \$29.50 clothbound, \$8.95 paperbound

Atomic, Molecular and Chemical Physics

6th International Conference on Atomic Physics (Proc. of an int. conf., Riga, USSR, August 1978). R. Damburg, ed. 666 pp. Plenum, New York, 1979. \$65.00

Optics and Acoustics

Optical Radiation Measurements, Vol. 1: Radiometry. F. Grum, R. J. Becherer. 348 pp. Academic, New York, 1979. \$34.00

Electricity, Magnetism and Fields

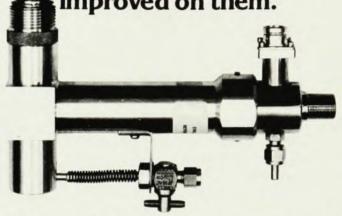
Sources of Gravitational Radiation (Proc. of a wrkshp., Seattle, Wash., July-August, 1978). L. L. Smarr. 518 pp. Cambridge U., New York, 1979. \$19.95

Electromagnetism. V. Rossiter. 176 pp. Heyden, Philadelphia, Pa., 1979. \$14.00

Electromagnetic Fields. R. K. Wangsness. 540 pp. Wiley, New York, 1979. \$20.95

Quantum Electronics and Lasers

Gas Flow and Chemical Lasers (Proc. of a symp., Rhode-Saint-Genèse, Belgium, 1978). J. F. Wendt, ed. 607 pp. Hemisphere, Washington, D.C., 1979. \$40.00


Holographic Interferometry: From the Scope of Deformation Analysis of Opaque Bodies. W. Schumann, M. Dubas. 204 pp. Springer-Verlag, New York, 1979. \$32.50

Astronomy, Cosmology and Space Physics

Stars and Star Systems (Proc. of meeting, Uppsala, Sweden, August 1978). B. E. Westerlund, ed. 281 pp. Reidel, Hingham, Mass., 1979. \$34.00

HELI-TRAN® systems are the proven performers in sample cooling

... and now we've even improved on them.

Take, for example, our new-generation LTD-3-110 model for cooling ESR and NMR samples from 300 °K to 4.5°K. It now offers better consumption and even more convenience features than ever before. It cools samples in all commercial microwave cavities and is available with a complete line of temperature controls/readouts and temperature sensors.

Our LT-3-110 model cools samples from 300°K to 2°K. It gives precise temperature stability of ±0.01°K in the automatically controlled model. It operates in any orientation, permits rotation of samples and offers fast experiment turnaround time. Operating cost is much less than for other helium devices.

For versatility and performance, we supply specialized accessories for more than 25 applications, including spectroscopy, UHV, resistance measurements, IR detectors, lasers, x-ray diffraction, Mossbauer Effect and others.

For more information about cryogenic instruments, ask for a copy of our catalog, "Laboratory Cryogenic Systems." Call (215) 398-6128. Or write: APD-Cryogenics, Air Products and Chemicals, Inc., Box 2802, Allentown, PA 18105.

CRYOGENIC SYSTEMS

Circle No. 32 on Reader Service Card

59