Your Best Source

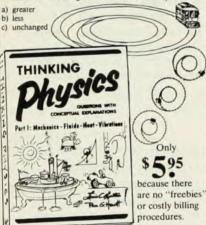
FOR

"Off-The-Shelf"

OPTICS

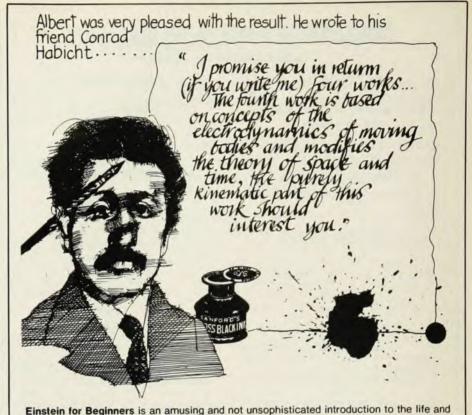
IN THE U.S.A.

ROLYN OPTICS


300 North Rolyn Place P.O. Box 148 • Arcadia, Calif. 91006

Circle No. 27 on Reader Service Card

THE QUESTIONS AND EXPLANATIONS IN EPSTEIN'S & HEWITT'S NEW THINKING PHYSICS ARE DESIGNED TO SHARPEN THE CONCEPTUAL SKILLS OF ALL STUDENTS—WHETHER THEY BE IN YOUR DESCRIPTIVE, PRE-MED, OR CALCULUS PHYSICS CLASS.


SWITCH

A streetcar is freely coasting (no friction) around the large circular track. It is then switched to a small circular track. When coasting on the smaller circle its speed is

Circle No. 50 on Reader Service Card

thought of the renowned physicist. A timely gift in Einstein's centennial year, the book's "comic book" format makes it appealing to non-physicists. The book was written by Joseph Schwartz and illustrated by Michael McGuinness (Pantheon; \$8.95 cloth, \$2.95 paper).

 C. van Schooneveld, ed. Image Formation from Coherence Functions in Astronomy, D, Reidel, 1979.

 R. Gordon, PHYSICS TODAY, July 1978, page 46.

> RICHARD GORDON University of Manitoba Winnepeg, Manitoba

Polymer Stress Reactions, Vol. 2 (Experiments)

A. Casale, R. S. Porter 342 pp. Academic, New York, 1979. \$32.00

Polymer Fracture

H. H. Kausch

332 pp. Springer-Verlag, New York, 1978. \$59.00

The brittleness of glasses, the impact strength of plastics in crash helmets, bottles or instrument housings, the tear strength of films or fibers are among the principal elements of concern in the burgeoning study of polymeric materials. These are the topics of the large and rapidly growing body of papers and books on polymers now available to scientists, engineers and designers. Now added to this group are two volumes that make notable

contributions to the field: Polymer Fracture by Hans Henning Kausch and Polymer Stress Reactions by Antonio Casale and Roger S. Porter.

Kausch, at the Polymer Laboratory of the Federal Polytechnic Institute, Lausanne, Switzerland, is well known for his work on polymer morphology and molecular mechanics as well as his research on the strength of materials. The avowed aim of his book is to connect the more conventional statistical and continuum mechanics interpretation of fracture phenomena to the newer spectroscopic studies (infrared, electron spin resonance, nuclear magnetic resonance, neutron scattering) of highly stressed polymeric chains and the kinetics of their rupture. Relating the literature on the observed modes of viscoelasticity and irreversible deformation from polymer morphology and solid-state physics, Kausch explains the behavior and rupture of polymeric materials in terms of molecular slip and breakage processes. This leads to interesting, methodical and well-thought-out interpretations of fracture toughness, crack propagation rates and fatigue of all major polymer systems. Thus, the book is an outstanding contribution to our understanding of the role of chain ruptures during mechanical failure.

In view of this excellent coverage, one regrets that this book does not go somewhat further. Notwithstanding his extensive survey of the material and his valuable analyses, Kausch does not pro-

vide a comprehensive summary of his views. Further, the primary emphasis on chain rupture (6 out of 9 chapters) causes the role played by friction and dissipative mechanisms to be short changed even though dissipation typically contributes several orders of magnitude more to the level of fracture strength and toughness than does chain rupture. Lastly, the table of contents is overly brief. Nevertheless, every student and practitioner of polymer science and engineering should find this book to be a valuable resource for his work.

Volume 2 of *Polymer Stress Reactions*, by Casale and Porter, contains the experimental material which was the basis for the discussions in their first volume of the mechanisms of mechanical degradation and of the instrumentation for following molecular-weight changes. Porter, director of the Polymer Institute of the University of Massachusetts at Amherst, is well known for his pioneer work in shear degradation and hyperstrong polymers. Casale, senior scientist of SNIA VISCOSA of Milan, has had long experience in polymer physics.

The second volume is divided into sections on the principal groups of polymers and on the changes in the bulk and in the solution states during the most important operations. The authors present an extraordinarily extensive and complete survey in which they cover all important aspects and materials, hypotheses and experimental evidence in the field of polymeric stress. In most cases, the authors include the original investigator's interpretations, but in places they annotate the text with their own views

The reader becomes familiarized with the extremely wide range of reactions that can be induced by mechanical energy. Starting from discontinuities and flaws and enhanced by other morphological features, stress reactions (mostly in the form of chain ruptures) determine strength, fatigue and wear. Porter and Casale discuss such important processes as mastication, blending, milling, grafting, shearing, extrusion, drilling, pumping and drawing. They point out the importance of free radicals and discuss their life times and their fates-reaction, healing or stabilization. The authors extend the discussion to treat molecular degradation kinetics by the determination of ultrasonic and viscometric flow stresses. There is even a section on drag reduc-

The book is thus a veritable fountain of information on all matters of molecular damage inflicted by mechanical stresses. Using extensive illustrations, tabulations and references, the authors pull together an extremely diverse field by juxtaposing the relevant pieces of literature; a most valuable service for any worker in this area. The only criticism one could level at this book is that in many instances,

CO-NETIC Magnetic Shields

for Photomultiplier Tubes

- Broadest Stock
- Special Shields

Send For NEW PM-4 Catalog

Circle No. 28 on Reader Service Card

pulsar-

Phone 312 / 766-7800

TWX 910-256-4815

the performance leader in high voltage switching and triggering

Fly into the 1980's with Pulsar's new Marx generator design!

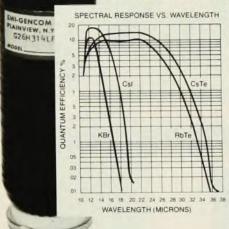
Pulsar's latest timed ultraviolet spark gap firing circuit is the heart of the Model 400 coaxial Marx generator. Pulsar's Model 400 gives you the best control over pulse output jitter available today.

The Model 400 produces a -400 kV output in response to a +10V trigger pulse.

Come to Pulsar for solutions to your most demanding pulsed power problems.

- output: 400 kv
- delay time: less than 150 nS
- total time spread: ±2.5 nS

• trigger: Pulsar's Pulspak 10A precision trigger generator


pulsar associates, inc. high voltage electronics . . .

11491 SORRENTO VALLEY ROAD, SAN DIEGO, CA 92121 (714) 455-5933

Fast UV Detectors

Suitable for experiments in Plasma Research, Fusion. Fast UV Lasers, Cerenkov Radiation Detection, Short-lived Free Radicals, etc. All types can be used in the single photo-electron mode.

Typical specifications

Gain: 106 at 2300 volts for cesiated types Rise time: 3 nanoseconds Cathode Diameter: 0.625 inches Window Material: MgF2 is standard.

CaF2, LiF, and fused silica on special order

Cathode types: Csl, CsTe, RbTe, KBr, Bialkali, and S-20.

Power supplies and housings with vacuum coupling flanges and RFI shielding are available for all types.

For further information contact:

EMI GENCOM INC.

80 Express St., Plainview, NY 11803 • 516-433-5900 TWX 510-221-1889

Circle No. 30 on Reader Service Card

PRA's high intensity pulsed light sources.

The PRA 610 microsecond pulsed light sources offer maximum versatility for applications requiring high ultraviolet intensities.

- Discharge energy per pulse to 100 joules
- Repetition rate 1 to 100 pps
- Spectral range 200 nm to 1200 nm with peak intensities
- Various pulse widths 1.5-50 µ sec.
 Non magnetic lens aperture for ESR/NMR applications
- Carefully designed for minimized RFI

PRA manufactures pulsed light sources with a variety of pulse widths and discharge energies and has people with broad experience in optical systems design to advise you.

Photochemical Research Associates Inc.

45 Meg Drive, London, Ontario Canada N6E 2V2 (519) 686-2950 Telex 064-7597

Circle No. 31 on Reader Service Card

Porter and Casale are satisfied with presenting an abstract of the literature rather than an analysis, digest or integration.

> FREDERICK R. EIRICH Department of Chemistry Polytechnic Institute of New York

book notes

Aspects of biophysics. W. Hughes. 362 pp. Wiley, New York, 1979. \$18.95

William Hughes's new biophysics text is directed towards those "who have a basic knowledge of physics, chemistry and biology and who wish to see how some of the more elementary parts of physics may be applied to the study of living matter.' He has organized the book according to biological systems of increasing complexity, beginning with molecules and proceeding to organelles, cells, tissues and so forth. The first two chapters discuss the physical aspects of biological macromolecules and the various techniques for their study. Hughes then introduces some elementary concepts for describing the behavior and properties of macromolecules, following this with two chapters devoted to enzymes and nuclei acids. After considering cell membranes and nerve impulses the author then provides an introduction to artificial membranes. Chapter 9 is concerned with energy transduction and chapter 10 discusses the basic ideas behind radiation effects. The next five chapters describe salt and water transport in the gut, the behavior of striated muscle, blood flow and heart action and the physical aspects of vision and hearing. Hughes finishes up with a discussion of the origin of living matter and a review of developments in bioengineering.

Magnetic Properties of Coordination and **Organometallic Transition Metal** Compounds, Vol. 10, Supplement 2 (Landolt-Börnstein). E. König, G. König. 982 pp. Springer, New York, 1979.

This is the second supplementary volume in the Landolt-Börnstein series on magnetic susceptibilities and electron spin resonance of coordination and organometallic transition metal compounds. The first part of this reference work complements and extends the collection of magnetic-susceptibility information for the aforementioned compounds, which was presented in volumes 2 and 8. The authors review the data published in 1969 and 1970 in this supplement.

Most of the magnetic susceptibility data refer to a limited temperature range (often between 77 and 300 K), however,