
20 MHz COUNTER

Model 719 \$585.00

- Adjustable Display Time From 1 to 5 seconds in REPEAT Mode
- Positive and Negative Discriminator Inputs
- 20 MHz Counting Rate

Mech-Tronics

NUCLEAR

430A Kay Ave., Addison, II. 80101 For more information WRITE OR CALL COLLECT (312) 543-9304

Circle No. 77 on Reader Service Card

letters

continued from page 15

led to Nobel prizes, clearly underscoring their intrinsic scientific merit. But both of these discoveries were made with modest equipment, at modest expense. The discovery of pulsars was carried out largely through the efforts of then graduate student Jocelyn Bell and four other students, spending two years banging wooden poles into the ground, stringing chicken wire between them, and recording the data on paper-chart recorders. No giant computers, no 100-million-dollar radio telescopes and multi-million dollar crash programs there. Just hard work, intelligence, imagination-and a bit of luck. But luck seems to be with those who are prepared for it, and who seize the day. If we look back over the history of radioastronomy, what we find is that many of the great steps were made by the Karl Janskys and Grote Rebers, funding their research on a shoestring; or the Jocelyn Bells who persist in the face of sage advice that what they have found is unimportant.

It is far too glib to suggest that money buys good ideas. This is not to say that "big science" is unnecessary, but that the intellectual edifice of science that Burke refers to is not built on millions of dollars, but on the insights, ideas and creativity of individuals. Let us hope that in the face of increasingly concentrated money in a few giant research institutions, the individuals with scientific ideas can still be heard above the din of the research factories, and be supported simply because of the ingenuity and beauty of their ideas.

7/27/79

KENNETH BRECHER Boston University Boston, Massachusetts

THE AUTHOR COMMENTS: Kenneth Brecher prefers, in his comments on my letter, to avoid practicality as an argument for science because it "debases both the practioners and those who support it." This Brahmin view has not been universally agreed to by scientists. Galileo, Franklin, Gauss, Helmholtz, Kelvin, von Neumann, and Fermi are a few of the many practitioners who have expressed the opposite opinion. Science and technology are closely linked, and the aesthetics of science are not tainted when practical applications are found. No rash promises for practical benefits need be made, because history shows that the applications come in unexpected forms from unexpected sources, but the mutually beneficial exchange has been continuous for the last two centuries, and shows little sign of slackening.

In his concern for the heavy demands of big science, and radioastronomy in particular, Brecher is more seriously mistaken. When pioneering work is done with modest means, as in the discovery of pulsars, we can all take pleasure in the elegance of the work. Yet, from the days of Tycho Brahe, it has from time to time been obvious that expensive equipment was needed to get the data so that theorists have facts to preserve them from error. At the opening of our own century, George Ellery Hale paved the way for modern astronomy by building a series of telescopes of extravagant size, and just recently Jan Oort persuaded the Dutch government to spend a very large sum on the Westerbork Synthesis Radio Telescope, with very little local support, and that instrument has already yielded a wealth of new insights into the nature of the cosmos. When the flux of photons is small, the collecting aperture must be large, and size is expensive. Brecher is also mistaken in his notions of size: The discovery of the 3 K cosmic background was not small science. Penzias and Wilson inherited the finest cryogenic maser receiver and the best calibrated antenna in the world, backed by the massive resources of Bell Labs. The discovery of quasars required still greater resources: Initial positions were measured with the Owens Valley interferometer of Cal Tech (the largest ONR program in US radio astronomy), complemented by Hazard's radio occultation work at the great 210-ft dish of CSIRO in Australia (the world's largest). The full story was clinched by optical observations with the 200-inch telescope at Mt. Palomar. No backyard science there!

BERNARD F. BURKE Massachusetts Institute of Technology

7/25/79

Soviet vs. US referees

You published my letter "PRL versus JETP" and the "PRL Comments," which I find very demonstrative (December, page 82). At the end of the comments, the *PRL* editors inquire:

"... our authors practically never accept the criticism of the referee. Why that difference? [between PRL and JETP Letters-M.A.]. Are Russian referees more precise and more acquiescent? Are the editors of JETP firmer in their rejections than we are (or can be)?" The answers become obvious, if one questions: What happens, if the referee detains his comments for more than two weeks? Or if the referees essentially contradict each other, so that at least one of them is definitely wrong? Or if the paper is certainly novel, but the referee doubts its influence on further research? Or the author disagrees with the referees' specific criticism? Or the referees' comments are imprecise, or wrong due to his irresponsibility?

The situation in *JETP* and *JETP*Letters is as follows: If the comments refer to the style and are specific, any author does his best readily and quickly, because this leads to immediate publica-

For measurement solutions, you can't beat the SYSTEM.

All the power of an oscilloscope. And more.

Tektronix Signal Processing Systems go far beyond signal acquisition and display to provide complete waveform analysis capabilities. The integrated system components work together to automatically acquire the signals you need, make the computations you want, then display, document and store your results.

Waveform Digitizers, offering the flexibility of compatible Tektronix 7000 Series plug-ins, capture transient signals up to 1 GHz and repetitive signals to 14 GHz. Processing operations occur at mini-computer speeds using dedicated system controllers. And, display versatility is provided through a selection of system peripherals — including graphic terminals, hard-copy units, and storage devices.

Plus, Tektronix Signal Processing Systems are GPIB compatible. Use them with specialized instruments to tailor the system for your specific measurement needs...implement data collection, make scientific calculations, even fully automate testing procedures...time efficiently and cost effectively.

A Tektronix Signal Processing System monitoring a repetitively pulsed ND: YAG Laser and frequency doubler at the Oregon Graduate Center for Study and Research.

All integrated with flexible system software.

Tektronix Signal Processing Systems come with proven ready-to-use software that is both modular and comprehensive. You maintain complete system control over instrument and measurement functions. With Tektronix enhanced BASIC, the

system software is interactive and uniquely suited for complete waveform array processing. Standard operators include high-level commands as simple as waveform

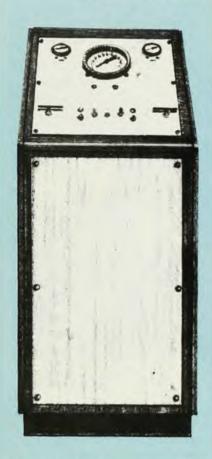
multiplication and division, or as complex as transfer function calculations.

Also, Tektronix system software provides complete graphic display capabilities: document and present measurement solutions in alphanumerics, graphs, bar charts, three-dimensional functions...the possibilities are unlimited.

All from Tektronix

System components, applications assistance, and training support come from a single supplier-Tektronix. That's your guarantee of system performance, service, and long term value. Whether you select a waveform digitizer, software, or a total waveform processing package, Tektronix Signal Processing Systems provide total measurement solutions.

For more information, call your nearest Tektronix Field Office and ask for a Signal Processing System Specialist, or write:


Signal Processing Systems Tektronix, Inc. P.O. Box 500 Beaverton, OR 97077

Squeeze Play

Tem-Pres Pressure Intensifiers

The compact Tem-Pres intensifier, originally designed for laboratory use, occupies minimum floor space. The self-contained unit automatically accepts low-pressure gas from an external source and compresses it to elevated pressures. Gauges indicating hydraulic drive pressure as well as inlet and intensified gas pressures are mounted on the cabinet panel. Tem-Pres constructs the units of high-yield, vacuum-melt steel forging, heattreated to exacting specifications.

specialists in high pressure/high temperature research systems

contact R. M. Shoff

Circle No. 78 on Reader Service Card

letters

tion after the referee's OK. Certainly, the Russian and Western ideas of excellence in style are very different, but this is another problem.

Novelty goes as the top priority: really novel papers are too rare to overflow the journal and maybe too important to be rejected due to a subjective opinion of the referee on their future influence.

The priority of the urgency is very high: It is considered senseless to publish a short communication in JETP Letters after the time-lag, which allows for a full-length publication in JETP, and it is considered improper to cause such a delay for a new discovery or a high-currentinterest paper in a rapidly changing field. That is why, in particular, the delay in the submitting of the referee's comments or their impreciseness is discussed and considered a disgrace by the editorial board (whose meetings are regular and include the best Soviet scientists in all fields of physics), refereeing is a part of the social duties of a physicist.

The same authoritative board meeting solves any conflict between the referee and the author or another referee. No referee and no author wants to expose his ignorance, incompetence or irresponsibility to this Board!

The result of such a system is obvious: the scientific truth is achieved in the first "round"; there remains no place for long correspondence with the author; the costs of the Journal are minimal (30 Kopecks per JETP Letters copy; that is about \$1.70 per month with no page charges).

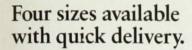
To summarize: Yes, I do think Russian referees are more precise and more responsible! Yes, I do think this is a challenge to Western physicists and editors!

MARK AZBEL Tel-Aviv University

5/8/79 Tel-Aviv, Israel

In a recent letter Mark Azbel showed that the Soviet editorial procedures yield demonstrably better results than American procedures (December, page 82). It seems to me that in their reply the editors of Physical Review Letters missed an opportunity to make a plea for improvements in the American editorial review system. Instead, they seem to say, among other things with which I agree, that the Soviet postal service is better (!), or that the Soviet physicists differ from American physicists in some way. Both views are certainly not so, but the latter contradicts present wisdom, which holds that all hominids are, statistically, isomorphous. We learn about ourselves when we study Soviet physicists, just as we learn about ourselves when we study Margaret Mead's Samoans.

The American system worked well when it served, say, 3000 physicists, and


personal relationships were able to give editors a measure of control. (I have a theorem that says that humans can identify with 3000 people, or less. The pragmatic proof is found in the fact that the Bible mentions only 3000 persons.) With 30 000 physicists there is simply no useful pressure that the editors can exert to help them obtain prompt and responsive reviews.

The Soviet system, which has also proven successful when used by other journals (The International Journal of Electronics is an example), evidently gives the editors sufficient clout to demand and get prompt and responsive reviews by enabling the editors to dispense honoraria for useful reviews. With the present American system one cannot be sure that in all cases there is a sufficient incentive to make a reviewer want to spend the time necessary for rapid preparation of the substantive and responsive review that Azbel feels the Soviet system yields. I find that to be told, by a referee who takes six weeks to get around to doing so, that I have the wrong attitude makes the American review process diverge. I grant that many reviewers will reply rapidly and well, but I see no reason to believe all reviewers can be expected to do so. I do not feel that altruism is universally distributed in sufficient quantity to be controlling in all cases. And professional self-interest can be a consideration in a group of 3000, but it is going to vary too greatly as a motivation to be a reliable consideration in a group of 30 000. Political self-interest should drive people to vote, but 100% do not vote. Any universal incentive, honoraria or whatever, will surely vield better reviews.

The essence of the problem is removing the bad cases. The bulk of the papers are reviewed rapidly and well, but the tragedy lies in those that are not. A legal system that unjustly executes 5% of its defendants can be a source of satisfaction to 95% of the population, but it is nevertheless a disaster to 5% of the population. Unfortunately, it is very difficult to make the plight of the few seem sufficiently important for the majority to take action.

Human institutions are not generally measured by their performance in the mean, but by their performance in the individual case. Each individual must be assured justice. The oldest remaining written legal code, that of the Babylonian Hammurabi, 2000 BC, is not concerned with the average honesty of witnesses but with the means of ensuring that no witness will be dishonest. Authors have one paper subject to editorial review, not a statistical ensemble. The imperative must therefore be to obtain for each paper prompt and responsive reviews that have an intellectual content commensurate with the author's measure of the intellectual content of his paper.

varian's veteran MCP's are now available for commercial applications.

Varian has a distinguished history of supplying volume quantities of high performance microchannel plates to the mili-This means industrial and scientific users have a new, high quality source for

a complete line of

high resolution electron

multipliers. All Varian MCP's are available from stock-even those hard-to-get 30 and 40 mm sizes!

High gain and low dark noise


18mm

25 mm

Whether your instrument is measuring electrons, positive ions, soft X-rays or ultra-violet, Varian MCP's provide a source of high gain, high speed and self saturating detection. They feature low dark noise, and excellent resolution is obtained with 12μm diameter channels spaced 15μm apart. Rugged construc-

in easier handling and

tion and solid borders result mounting.

For a free brochure describing these microchannel plates, holder assemblies, and their uses. or to place your order now, contact Varian, LSE Division, 611

Hansen Way, Palo Alto, CA 94303. Or, call (415) 493-4000, EXT. 4100/3308, or any of the Varian EDG sales offices throughout the world.

30mm

40mm

of PDP-11 Applications Note the second state of the second secon

FPS Expands the Scientific Universe

FPS MAKES GREAT COMPUTERS BETTER

The FPS AP-120B Array Processor

A great contribution to technology, the DEC PDP-11*, but it can't give you the computational power required for many scientific applications. That's why FPS developed the AP-120B Array Processor.

The AP-120B Array Processor gives economical minicomputer systems the extraordinary computational power of large scientific computers. For example, an AP-120B has been used in a PDP-11/34 system to reconstruct and analyze complex digital images. Without the AP-120B, the task would take more than two hours. With the AP-120B, it takes less than thirty seconds — that's a 240X improvement!

A PDP-11/70 and AP-120B would offer

even greater data handling capabilities. The FPS architecture is no secret. Internally synchronous operation and seven parallel data paths provide unequalled cost/performance, reliability, and programmability. Programmable I/O units also enable exceptional features, such as direct control of disc storage and real time data flow.

Controlled by simple subroutine calls from a FORTRAN program in the PDP-11, or other host computer, FPS Array Processors can be programmed by selecting routines from the extensive FPS Math Library, by writing new routines in the relatively simple AP Assembly Language, or through use of the AP FORTRAN Compiler.

Hundreds of FPS Array Processors are in use today by people who want to retain the hands-on control and affordability of a minicomputer system, but require the exceptional throughput of a large mainframe for their application.

Find out how this new power in computing (typically under \$50K complete) can benefit your application. For more information and an FPS Array Processor brochure, use the reader response number or coupon below. For immediate consultation, contact Floating Point Systems directly.

**DEC and PDP-11 are registered trademarks of Digital Equipment Corporation.

The Age of Array Processing Is Here...and FPS Is The Array Processor Company.

CALL TOLL FREE 800-547-9677 P.O. Box 23489, Portland, OR 97223 TLX: 360470 FLOATPOINT PTL

TLX: 360470 FLOATPOINT PTL In Europe & UK: Floating Point Systems, SA Ltd. 7, Rue du Marche, 1204 Geneve, Switzerland 022-280453, TLX: 28870 FPSE CH

Floating Point Systems, Inc.

FPS Sales and Service Worldwide: Boston, Chicago, Dallas, Denver, Detroit, Houston, Hunstville, Los Angeles, New York, Orlando, Ottowa, Philadelphia, Portland, San Francisco, Washington, D.C. International offices: Geneva, London, Munich, Paris, Tel Aviv (Eastronix, Ltd.), Tokyo (Hakuto Co. Ltd.) Please send me an FPS Array Processor brochure.

Name
Title
Company
Address
City
State
My Computer System is
My Application is

A discussion of the whole editorial control process is too vast in reach to attempt here. The point is that it is time that AIP and/or APS begin a real effort to review and improve the present editorial review system.

Human institutions seem to operate with dynamic stability. This wisdom is the message in the well-known paradoxical amphorisms: "Plus ça change, plus c'est la même chose", or the Sicilian, "If we want things to remain the same, things will have to change." My own version. which applies particularly to the academic world, is, "The problems remain the same, only the solutions change"! So I am not asking for change because the present system is without merit, but, on the contrary, because it has merit. And it is only with change to accommodate to a changing world that one can hope to keep it the same!

I realize that this is a concern of the minority and that most physicists have developed some mechanism to cope with the present system, but if those of the small minority who are tired of trying to make it work will write to me we can see what can be done!

M. W. P. STRANDBERG Massachusetts Institute of Technology Cambridge, Massachusetts

THE EDITOR OF PRL COMMENTS: In our response to Mark Azbel's first letter (December, page 83), we suggested that important differences between Physical Review Letters and JETP Letters followed from "appreciable differences between the expections of authors, referees and readers of these two, nominally similar, journals." To us, Azbel's second letter suggests how these differences in the journals may stem from considerable differences between Soviet society and Western society. I doubt that we could construct (even aside from logistic difficulties) an "authoritative" board whose opinions would be always accepted by referees and authors. We note that our costs to a member of about 50 cents an issue are not very different from the JETP Letters price of 30 Kopecks an issue. The difference in page charges must represent the difference between a subsidized and an unsubsidized journal. As to whether Russian referees are more precise and responsible than Physical Review Letters referees, we do not have enough information to comment responsibly.

Strandberg states that, "Azbel showed that the Soviet editorial procedures yield demonstrably better results than American procedures." We understood that Azbel demonstrated that Soviet procedures yielded quicker results. There are other dimensions to journals than speed of publication. Strandberg's statement concerning the "present wisdom," which,

we gather, considers that Western society, Soviet society and Samoan society are "isomorphous," we pass over. His, and implicitly, Azbel's, suggestion concerning honoraria is interesting but we doubt that it would be financially feasible for Physical Review Letters. We use about 8000 referees' reports a year. Our page-charge receipts of about \$300 000 a year and our receipts from member subscriptions of about \$225 000 set the scale of our economics. We doubt that an honorarium of less than \$50 would have any effect on responses, and that cost would be prohibitive.

Our strong disagreement with some of the specific statements in the letters of Azbel and Strandberg tend to obscure our broad agreement with their implication that Physical Review Letters, though it is in many ways an excellent journal, has serious flaws and that the editors, the American Physical Society and the community in general should be concerned with these flaws. Certainly, over the past decade, the society and editors have responded to deep concerns the community has expressed over the journals of the society-in particular, Physical Review Letters-and the editors have made many changes in editorial procedures in response to that concern. We are always making modest changes and we occasionally propose major changes. Such a proposal for a radical change in the journal is now under preparation and will soon be presented to the community for its consideration.

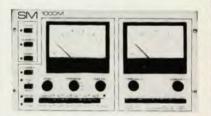
ROBERT K. ADAIR Editor 6/25/79 Physical Review Letters

US vs. USSR

I was attracted by the two complementary items about Linus Pauling in December-"Linus Pauling wins Lomonosov Gold Medal" (page 68) and the letter under the title "Pauling and Sakharov" (page 81). It appears to me that these two outstanding items can be misinterpreted to the detriment of our colleagues in the Soviet Union, who are being terrorized, humiliated and dehumanized. Surely Pauling's comparison of what happened to him during the McCarthy twilight era with the darkness in which many of our colleagues in the USSR are living today is an exaggeration. To compare the two governments as immoral on the same basis is surely an injustice to the democratic institutions and the freedoms we enjoy in North America. None of us in the United States and Canada today is dying a new death daily in concentration camps, jails and insane asylums like our colleagues Yuri Orlov, Alexander Bolonkin, Sergei Kovalev, Anatoly Shcharansky, Semyon Gluzman and the hundreds of others who are slowly being forgotten in the West.

VACUUM RECORDER

\$595.


- · 0 TO 1000 MICRONS
- 1" HOUR, 1" MINUTE CHART
- CABLES AND GAUGE TUBES INCLUDED
- 4" WIDE CHART
- SPECIAL RANGES & SPEEDS AVAILABLE

MOLYTEK, INC.

2419 Smallman St. • Pittsburgh, PA 15222 (412) 261-9030

Circle No. 10 on Reader Service Card

QUADRUPOLE RESIDUAL GAS **ANALYZER**

COMPLETE SYSTEM

5 x 10 -11 and 5 x 10 -13 Torr minimum detectable partial pressure with faraday and electron multiplier detector • 2 to 100 mass range • 6 Automatic sweep speeds with plug for external sweep or mass step generator Manual mass selector for leak detection or closed loop partial pressure control . 0 to 10 volt outputs for X and X-Y recorder/or oscilloscopes • Easy change tungsten or thoria coated iridium filaments, No alignment required . Compact mass filter mounted on conflat flange bolts directly to most SIMS, ESCA or Auger systems.

MOLYTEK, INC.

2419 Smallman St. • Pittsburgh, PA 15222 (412) 261-9030

Booth #7 Plasma/Fusion Show Circle No. 82 on Reader Service Card PHYSICS TODAY / OCTOBER 1979