From Laser Analytics...

THE NEW SPECTROSCOPY

Put the new tunable diode laser to work in your lab with the new Laser Analytics LS-3 Laser Source Spectrometer. Realize resolution limited only by the laser's spectral line-width of less than 0.0001 cm⁻¹. Scan spectra at wavenumber/millisecond rates. Tune hundreds of wavenumbers with an individual laser source and access the entire infrared spectrum from 330 to 3700 cm⁻¹ with interchangeable diode lasers. Tunable diode lasers, exclusively produced at Laser Analytics, are coupled to a stabilized cryogenic refrigerator, an efficient monochromator and dedicated electronic and optical pro-

cessing components to produce the LS-3. The LS-3 enjoys orders of magnitude greater resolving power than conventional infrared spectrometers. Note the one-wavenumber scan near 3.57 microns, showing completely resolved 0.006 cm-1 wide absorption lines in low pressure formaldehyde gas. With this resolving power, entirely new research topics are open to Laser Source Spectrometer users. The LS-3 is now being used in molecular spectroscopy, pollution monitoring, molecular beam analysis, combustion process studies, laser isotope separation and heterodyne radiometry.

Circle No. 36 on Reader Service Card

ACRS Science and Engineering Fellowships

The Advisory Committee on Reactor Safeguards, U.S. Nuclear Regulatory Commission is accepting applications for appointment to the ACRS Fellowship Program. Important goals of the program are: (1). to assist the ACRS in performing its functions relative to nuclear power safety; (2). to provide an opportunity for talented young engineers and scientists to develop an understanding of the nuclear power licensing process and expertise in the nuclear reactor safety area.

Applicants with the following backgrounds will be considered: (1). a doctorate in scientific or engineering fields with up to five years post-doctoral experience; (2). students in science or engineering who are in the final stage of their Ph.D. work; (3). engineers and scientists with experience in the nuclear field, who are at a stage in their careers when they can undertake a one-to-two year Fellowship position on a full time or part time basis.

Most positions will be located in downtown Washington, D.C. However, a few will be located at institutions around the nation where the necessary facilities are available to perform ACRS related work.

Fellows located in Washington on a full time basis will be compensated at approximately the GS-12 level—\$21,883-\$25,528. Fellows located at various universities will be compensated at a level competitive with other scientific and engineering graduate and post-doctoral fellowships being offered by the university.

Application for ACRS Washington Fellowships may be made on Standard Form 171, Personal Qualifications Statement. University sponsored fellowship nominations may be submitted by letter or other means.

U.S. Nuclear Regulatory Commission

Send applications or letters to: ACRS/NRC, Washington, D.C. 20555 Attn., Fellowship Program.

letters

continued from page 15

rienced, yet our voices are only weakly raised. If we cannot protect our brethren on Earth, how can we expect to protect them in outer space where the environment is alien and inimical to human existence from the outset?

Space colonization represents a monumental effort in technology to achieve the worthy end of peace—yet it is an expedient cop-out. The hardest task is not to move mountains, but to move human hearts. And that is the task before us.

M. J. DUNN McGhan Medical Corporation

5/16/78

McGhan Medical Corporation Santa Barbara, California

THE AUTHOR COMMENTS: Mike Dunn has expressed our dilemma only too clearly. Simply because it is more difficult to change human nature on Earth than to establish a space colony capable of sustaining and defending itself in the far reaches of the solar system, we should try to give ourselves the other option. Although interpersonal violence will certainly travel with the space colonies, it is unlikely that terrorism or the mass annihilation madness will prevail within their confines. These can only be perpetuated by politicians in a world where many different languages and cultures prevail and where an increasing population competes for diminishing resources.

MALCOLM THACKRAY SRI International Menlo Park, California

3/28/78

Membrane phase transitions

The article by John Nagle and Hugh Scott entitled "Biomembrane phase transitions" contains a discussion concerning the effect of cholesterol on lipid bilayers which is, unfortunately, incorrect. The authors have chosen to ignore the initial Raman work of Joseph Lippert and myself (Proc. Nat. Acad. Sci. 68, 1572-1576 (1971)) which showed clearly that the effect of cholesterol on membrane bilayers is not to "kill" the phase transition but in fact to greatly broaden it. The thermodynamic data which they cite are experimental artifacts induced by a finite calorimetric scanning rate in a calorimeter of insufficient sensitivity to observe such a greatly broadened transition. Recent measurements with the new Privalov calorimeter in several laboratories including our own have now shown that the original thermodynamic results must be revised. The improved thermodynamic measurements show that the effect of cholesterol is to broaden the melting transitions, thus substantiating the Raman work.

It is regrettable that these authors did not discuss the many advantages which the Raman effect has in determining membrane structure over the techniques that they did discuss. The Raman effect does not require the insertion of bulky molecular probes in the membranes as does the spin labelling technique, and the Raman effect is independent of the tumbling time of the bilayer, which may vary depending on the nature of the sample and its preparation-a fact that sometimes complicates the interpretation of the nmr data. Anyone interested in the physics of biomembranes must read the work in the Raman field as well as in the other areas which the authors have covered. A recent contribution from our laboratory (B. P. Gaber, P. Yager, W. L. Peticolas, Biophys. Journal 21, 161 (1978)) gives recent references to important Raman work from many other laboratories.

WARNER L. PETICOLAS

University of Oregon
Eugene, Oregon

THE AUTHORS RESPOND: The 1971 paper of Lippert and Peticolas states that "the effect of cholesterol on dipalmitoyl lecithin multilayers is to change the sharp, cooperative gel-liquid crystal transition to a diffuse, noncooperative event." To most physicists this means that cholesterol kills the phase transition. The letter of Peticolas highlights one of the difficulties of interdisciplinary research because workers with different backgrounds sometimes use the same words to mean different things.

3/7/78

4/6/78

Concerning our rather brief mention of Raman work, space and reference limitations required us to be selective rather than comprehensive in our coverage. We apoligize to the many workers whose contributions could not be acknowledged in this kind of article.

JOHN F. NAGLE H. L. SCOTT Oklahoma State University Stillwater, Oklahoma

More on search for quarks

I was surprised by the reaction of William Fairbank to my letter in December (page 11) where I attempted to show the difficulties encountered in this kind of experiment. I would much prefer to avoid any further comment, but, obviously, I am compelled at least to reject statements such as: "Morpurgo suggests, without proof, that phase-sensitive ac measuring tecuniques are more affected by the noise than dc measurements": I never made such an absurd statement, as any reader can verify.

On the contrary, the phase-sensitive lock-in technique used by our group was clearly mentioned in our paper [G. Gallinaro, M. Marinelli and G. Morpurgo, Phys. Rev. Lett. 38, 1255 (1977)]; this technique as well as the many precautions used to discriminate between spurious

and real residual charges will be illustrated in detail in a paper to be published by our group at the end of our set of measurements.

At this point I intentionally omit a more detailed analysis of Fairbank's comments to my letter; a new Ehrenhaft-Millikan dispute appears out of place.

1/6/78

GIACOMO MORPURGO University of Genoa Genoa, Italy

I regret any misunderstanding resulting from Giacomo Morpurgo's comments about our experiment or from our reply. Both experiments were carefully done and are significant contributions to an important problem in physics. We look forward to the complete publication of Morpurgo's results and will soon prepare a more complete article on our experiment.

It is important to note that the published results1,2 of the two experiments are not inconsistent with each other and are not necessarily inconsistent with any other published experiment. Together they show that there are very few fractional charges on 1021 nucleons. Morpurgo found 0 fractional charges on 10⁻³ grams of iron. We found 2 fractional charges on 0.6×10^{-3} grams of niobium. No other experiments have looked at the total charge on a larger amount of material without first removing all charged particles with a trap.3 All other experiments that have claimed more sensitivity depend on enrichment procedures and detection methods that require making assumptions about the properties of the fractional charges to guarantee detection. These assumed properties cannot all be known with certainty.4

We are working hard to take more data, and we urge Morpurgo to continue his important experiments.

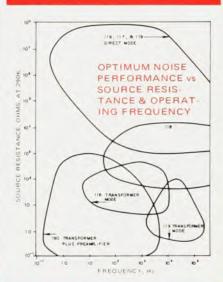
References

5/4/78

5/25/78

- G. S. LaRue, W. M. Fairbank, A. F. Hebard, Phys. Rev. Lett. 38, 1011 (1977).
- G. Gallinaro, M. Marinelli, G. Morpurgo, Phys. Rev. Lett. 38, 1255 (1977).
- A. M. Hillas, T. E. Cranshaw, Nature 184, 892 (1959).
- L. W. Jones, Rev. Mod. Phys. 40, 717 (1977).

WILLIAM M. FAIRBANK Stanford University Stanford, California


I fully agree with the spirit of Fairbank's comment above and share his regret for any misunderstanding that may have intervened; we are continuing the measurements and I am pleased to hear that Fairbank is doing the same.

GIACOMO MORPURGO Universita di Genova Genova, Italy

We back-up our Low Noise Preamps with the PARC Model 114 Signal Conditioning Amplifier

Provides the necessary power and narrow banding to extend the capabilities of our proven performance low noise preamps.

Circle No. 37 on Reader Service Card