
The transition to turbulence
Modern optical and computer techniques and new concepts in the theory

of nonlinear systems are yielding insights into such hydrodynamic instabilities
as Couette flow, vortex streets and the Rayleigh-Benard instability.

Harry L. Swinney and Jerry P. Gollub

Fluid flows have been studied systemat-
ically for more than a century and their
equations of motion are well known, yet
the transition from laminar flow to tur-
bulent flow remains an enigma. The
difficulty lies in the intractability of the
nonlinear hydrodynamic equations that
express the conservation of mass, mo-
mentum and energy for a fluid contin-
uum. Although these equations can be
linearized and readily solved for a system
near thermodynamic equilibrium, the
solutions of the nonlinear equations—
required to describe fluids far from equi-
librium—are generally neither unique nor
obtainable.

Flow regimes

A fluid system can be driven away from
thermodynamic equilibrium by imposing
a gradient in the velocity, the density or
the temperature. If there is a velocity
gradient, the "distance" away from
equilibrium is conveniently characterized
by a dimensionless quantity, the Reynolds
number, R = VL/v, where V and L are a
characteristic velocity and length re-
spectively, and v is the kinematic viscos-
ity, the ratio of the viscosity coefficient to
the density. Similarly, in systems with
density, temperature or other gradients,
the distance away from equilibrium is
described by dimensionless numbers
proportional to the imposed gradient.
We will use the term "Reynolds number"
in a generic sense to refer to all such
numbers.

For any fluid system sufficiently near
equilibrium, there exists a unique, stable
solution to the hydrodynamic equations.
Regardless of the initial conditions, the
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fluid will approach this solution asymp-
totically for sufficiently small Reynolds
number; however, as the Reynolds num-
ber is increased above some critical value
Rc, this solution becomes unstable in the
sense that an inverted pendulum is un-
stable to small fluctuations. A new flow
pattern then develops. The solution for
small Reynolds number reflects the tem-
poral and spatial symmetry of the
boundary conditions; in the transition to
the second flow regime, this symmetry is
generally broken.

Fluids in which the Reynolds number
is increased beyond Rc often exhibit a
sequence of distinct flow regimes. The
increasingly complex flows display a va-
riety of temporal and spatial patterns that
are not in any obvious way related to the
boundary conditions.

As the Reynolds number is increased
further, these flows become irregular in
space and show a chaotic or noisy time
dependence. However, even the appar-
ently chaotic flows are considered to be
governed by the deterministic hydrody
namic equations. Although it seems
paradoxical, a deterministic flow can ap-
pear chaotic; that is, as a consequence of
the nonlinearity of the system, the equa-
tions can have exceedingly complex so-
lutions that do not look as if they are the
result of a deterministic process.

The round jet in figure 1 illustrates the
transitions from laminar flow through an
instability to chaotic flow. At what point
can the name "turbulence" be applied to
such a flow? Often this term is reserved
for flows in the limit of very high Reyn-
olds number, where the small-scale mo-
tions become essentially independent of
boundary conditions. However, we will
use the term here to describe any flow in
which the dynamical variables exhibit
noisy or chaotic time dependence. We
make this choice because our viewpoint is

that the essential distinction between
laminar and turbulent flows is the pres-
ence of noise in the velocity field of a
turbulent flow. Once this element is
present, further increase in Reynolds
number results in a gradual increase in
the frequency and wavenumber scales of
the velocity fluctuations.

In this article we will be concerned with
the instabilities that precede turbulence
rather than strongly turbulent flows.
Although a century of investigation by
talented theoreticians and experimen-
talists has produced a rather detailed
understanding of the primary instability
(at Rc) of various flows, the subsequent
instabilities are still not understood. For
more detailed discussions of hydrody-
namic instabilities we refer the reader to
a number of general works.1

What is the nature of these successive
instabilities? Is there a limit to the
number of instabilities that can occur
before the flow becomes chaotic? Is there
even a well defined value of the Reynolds
number beyond which the flow becomes
chaotic? These questions can not be
answered with confidence in any single
case, and we do not know to what extent
there are universal answers to them.

Fluid flow is only one of many classes of
nonlinear systems far from equilibrium
that have largely resisted past attempts
at understanding. Other examples in-
clude problems in population dynamics,
chemistry, ecology, geophysics, plasma
physics, biology and economics.2 Ilya
Prigogine, who was awarded the 1978
Nobel Prize in chemistry for his contri-
butions to the thermodynamic theory of
nonlinear systems far from equilibrium,
has shown that a system taken away from
equilibrium can become unstable and
evolve a highly ordered structure. Ex-
amples of "dissipative structures" in
chemical systems have been extensively
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Instability in the shear layer of a round fluid jet. Starting with laminar flow, the fluid undergoes
a shear instability and a transition to turbulence. What is the nature of such fluid instabilities?
Photograph by Gene Bouchard, Stanford University. Figure 1

studied by Prigogine and his group.
The current wide interest in nonlinear

systems far from equilibrium stems in
part from an appreciation of their per-
vasiveness in many disciplines and in part
from the hope that new developments in
experimental techniques and in applied
mathematics may lead to an improved
understanding of them. In this paper we
will describe several hydrodynamic sys-
tems and recent experimental and theo-
retical work that has begun to remove
past roadblocks toward understanding
them.

Three unstable flows

Experimental and theoretical efforts to
understand hydrodynamic instabilities
have concentrated on a small number of
simple systems. Although there are
many systems (including pipe flow and
channel flow) that make a transition from
simple laminar flow to turbulence without
a sequence of well defined instabilities, we
will consider three examples of systems
that exhibit a sequence of hydrodynamic
instabilities:
• The flow of a fluid contained between
two concentric cylinders with the inner
cylinder rotating, a geometry known as
"circular Couette flow." In the initial
laminar flow only the azimuthal compo-
nent of the velocity is nonzero, but when

a critical Reynolds number (proportional
to the angular velocity of the inner cylin-
der) is exceeded, this flow becomes un-
stable and a new one is established. The
structure of the new flow pattern is shown
in figure 2a. This instability and the form
of the secondary flow, which consists of a
stack of toroidal vortices superimposed on
the azimuthal flow, were observed and
explained by Sir Geoffrey Taylor3 in 1922
in a remarkable theoretical and experi-
mental investigation. At a higher, well
defined Reynolds number, Taylor vortex
flow becomes unstable to transverse
oscillations, and the vortices acquire
travelling waves, as shown in figure 2b.
At this point the flow is time-dependent,
but strictly periodic. At much higher R,
the flow becomes turbulent, in a process
that is not well understood.
• The flow past a circular cylinder placed
perpendicular to a uniform stream. In
the laminar-flow regime, the streamlines
vary smoothly around the cylinder; for
larger R, the wake of the cylinder develops
a striking travelling-vortex pattern known
as a "Karman vortex street," shown in
figure 2c. Additional instabilities are
observed before the flow ultimately be-
comes turbulent. For this geometry the
analytic theory is particularly difficult
and has not been extended beyond the
simple laminar-flow regime.

• The instability in a fluid contained
between two horizontal thermally con-
ducting flat plates with the lower one
warmer than the upper one. For this
system with an imposed temperature
rather than velocity gradient the unique
solution of the hydrodynamic equations
near equilibrium corresponds to pure
conduction, with a linear temperature
gradient and no flow. The distance away
from equilibrium R is given by the Ray-
leigh number, which proportional to the
temperature difference between the
plates. In a classic paper on hydrody-
namic stability Lord Rayleigh4 showed in
1916 that the pure conduction state would
become unstable against a fluctuation in
the form of two-dimensional convection
rolls, as shown in figure 2d. This insta-
bility is now known as the Rayleigh-
Benard instability, in recognition of Henri
Benard's observations of convection cells
in experiments in 1900 on the related
problem of convection in a fluid with a
free surface. As R is increased beyond Rc
in the Rayleigh-Benard system, a three-
dimensional pattern occurs if the viscosity
is sufficiently high, and at larger R the
convection becomes time-dependent (see
figure 2e). The transitions in Rayleigh-
Benard convection beyond the primary
instability depend on another dimen-
sionless number, the Prandtl number a,
which is the ratio of the kinematic vis-
cosity to the thermal diffusity. For figure
2d, a = 100; figure 2e, a = 63, and for fig-
ure 5 (right), cr = 2.5.

There are many other instances of hy-
drodynamic instabilities, usually driven
by some combination of gradients of
temperature, density or velocity. For
example, the regular cloud patterns
known as cloud streets are probably pro-
duced by an instability involving both
density and velocity gradients. Insta-
bilities can also be produced in conduct-
ing fluids or plasmas by electric and
magnetic fields.

Experimental techniques

Because the theory of fluids far from
equilibrium is difficult and the solutions
not intuitive, experiments play a crucial
role in the guidance of theoretical devel-
opments. This has been particularly true
in the study of hydrodynamic instabili-
ties, where markers such as dyes, bubbles
and smoke have often revealed unex-
pected secondary flow patterns.

A great variety of markers has been
developed to make flows visible. Aniso-
tropic particles make it possible to ob-
serve the overall structure of a flow, as in
figure 2. Electrochemical techniques are
used to induce color changes or bubble
formation. The photographs can some-
times be analyzed quantitatively, but
different types of markers do not in gen-
eral respond to the same dynamical fea-
tures of the flow, and photographs do not
indicate reliably whether or not a flow is
chaotic. Despite these limitations,
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flow-visualization techniques continue to
be an important tool for surveying the
possible flow patterns in a system. Fur-
thermore, they are often used to comple-
ment other, more quantitative, tech-
niques that measure local properties of a
flow.

Quantitative methods for studying in-
stabilities include measurements of bulk
properties that reflect changes in the flow,
such as the torque in rotating flows, the
mass flux in pipe flow and the heat flux in
convection. These methods can be quite
sensitive and are even useful in studying
time-dependent phenomena.

The principal quantity of interest in
flow studies is of course the velocity field.
The two major techniques for measuring
the local velocity are hot-wire anemome-
try and laser Doppler velocimetry.

In hot-wire anemometry the fluid velocity
is deduced from measurements on a very
fine wire with a resistance that depends
on the rate of heat transfer to the fluid
moving past it. The technique has been
highly refined, and it is possible to de-
termine velocities in regions as small as
0.1 mm in diameter, and to follow velocity
fluctuations up to about 50 kHz. How-
ever, the method has two disadvantages
in addition to the limited frequency re-
sponse:
• the technique is not absolute, making
calibration of the wires necessary, and
• a probe must be inserted into the flow,
the wake of which itself can disturb the
flow.

In the laser Doppler technique the fluid
velocity is determined from measure-
ments of the Doppler shift of light scat-
tered by the moving fluid.5 As illustrated
in figure 3, the scattered light is mixed
with light from the laser on a square-law
photodetector, and the resultant photo-
current has a component oscillating at the
Doppler-shift frequency vi>. The com-
ponent of the velocity V parallel to the
scattering vector k = ko — It, is given by V
= (1/2X/sin1/2 )̂co, where 6 is the scattering
angle and X is the wavelength of the light.
Any velocity component can be selected
by appropriate choice of geometry, and
measurements can be made of Doppler
shifts ranging from about 1 to about 108

Hz (corresponding approximately to ve-
locities from 10"4 to 105 cm/sec). The
typical linear dimensions of the scattering
volume are about 0.1 mm. Usually VD is
much greater than the characteristic
frequencies of the fluid motion; therefore
measurements of CD in short time inter-
vals yield essentially the instantaneous
velocity V(t). The advantages of laser
Doppler velocimetry are that it is direct,
absolute and nonperturbative. The
major disadvantage is that the equipment
is complex and expensive.

The laser Doppler technique can be
used to produce detailed contour maps of
the velocity field in steady flows, as shown
in figure 4. This map was made by au-
tomatically scanning a small convection

Some examples of instabilities in fluid flows The fluid in photo a, trapped between an inner rotating
cylinder and an outer fixed cylinder, exhibits time-dependent toroidal vortices known as "Taylor
vortices." At greater angular velocity the fluid (b) exhibits travelling waves superimposed on the
Taylor vortices. Flowing past a cylinder, the fluid in c exhibits another instability, a so-called
"Karman vortex street." The two-dimensional convection rolls in d form a layer of fluid between
two horizontal plates, the lower one being warmer. A more complex pattern develops for greater
temperature differences, as shown in e. The photographs are by R Fenstermacher (a and b), D.
J Tritton (Physical Fluid Dynamics, Van Nostrand Reinhold, New York, 1977) (c), and F Busse and
J. Whitehead (d and e). Figure 2

cell with respect to the scattering volume
in two dimensions, and then using a
computer to construct contours of a con-
stant velocity component. We can see
immediately that the cell contains two
convective rolls.

By interfacing a hot-wire or laser
Doppler anemometer to a computer, long
records of a velocity component V{t) can
be accumulated for Fourier analysis.
This is important in studies designed to
determine whether a flow is singly or
multiply periodic, or whether it is chaotic.
The power spectrum P(f) (magnitude
squared of the Fourier transform) of V(()
contains only sharp peaks if the flow is
periodic, but it contains broad-band
spectral features if the flow is chaotic.
Hence the frequency resolution of the
spectrum is of critical importance. If no
averaging is employed to reduce statistical
noise, the frequency resolution is ap-
proximately 2/T, where T is the duration

of the data record. The maximum fre-
quency in a spectrum is (2AT)"1, where
AT is the interval between adjacent
samplings of the velocity. Because both
high resolution and a broad spectral range
are needed to distinguish between the
different dynamical regimes of a flow,
data records should contain as many
samples {n = T/AT) as possible.

Laser Doppler experiments

Detailed quantitative studies of se-
quences of instabilities leading to turbu-
lence are under way in a number of labo-
ratories.6 As an example of such experi-
ments, we will describe the laser Doppler
studies of circular Couette flow and
Rayleigh-Benard convection made in our
laboratories.7 These experiments were
designed to see whether different systems
exhibit similar dynamical regimes as they
are driven further from equilibrium.

The radial component of the velocity,
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Photocurrent i(t)

Detector

Beamsplitter

Scattering volume

Laser light

Fluid flow
Lens

Laser Doppler system for velocity measurement. Laser light of frequency <»0 and wavevector k0

is focussed on the fluid. The scattered light from a small volume, with its frequency Doppler shifted
to cs, passes through a beamsplitter and is mixed with the unshifted light The alternating component
of the photocurrent Ht) then oscillates at the Doppler frequency c0 = i's — VQ. Velocities of 10~4-105

cm/sec can be measured with this technique. Figure 3

Vr, was measured in a Couette-flow sys-
tem for Reynolds numbers ranging from
that corresponding to the onset of Taylor
vortex flow up to turbulent flow. In
Taylor vortex flow, Vr is time-indepen-
dent but has a periodic variation in the
2 (axial) direction. The x -dependence of
Vr is described by a single Fourier com-
ponent and its harmonics; the harmonic
content increases with increasing R. For
time-independent Rayleigh-Benard
convection, Pierre Berge and Monique
DuBois have observed similar behav-
ior.6

As R is increased (for example, by in-
creasing the rotation rate in Couette flow
or the temperature difference in convec-
tion) the flows begin to oscillate in time,
and the velocity measured at a fixed point
in a sample has a spectrum like those
shown in the upper curves in figure 5. In
the Couette system the oscillations rep-
resent the passage of the waves seen in
figure 2b by the point of observation.
The spectra for both systems contains no
frequency components other than the
fundamental and its harmonics, and these
components have no width beyond the
instrumental width (A/// is less than
about 10~3). The flow in this regime thus
is strictly periodic, with the oscillations
coherent over hundreds of cycles.

As R is increased for these two systems,
the close correspondence between them
persists. A second time-dependent in-
stability occurs in each system, resulting

in a flow with two incommensurate
frequencies, as shown in the middle
curves in figure 5. Such a system is
termed "quasiperiodic." Although the
velocity spectra appear rather complex,
each consists of only two fundamental
frequencies and their linear combinations.
These quasiperiodic states are not no-
ticeable in flow visualization, and have not
been explained theoretically.

As R is increased further, broad-band
noise components appear in the spectra
in addition to the narrow peaks (see the
lower curves in figure 5). These transi-
tional states have some properties of both
periodic and turbulent flows: The nar-
row peaks indicate that the velocity cor-
relations persist for at least as long as the
experiment duration, yet the broad com-
ponents clearly indicate a chaotic element
in the flow.

Eventually, at large R, the sharp spec-
tral components disappear and the tran-
sition to turbulence is complete. A large
interval in Reynolds number or Rayleigh
number is contained between onset of
nonperiodicity (broad-band spectral
components) and the loss of the remain-
ing sharp structure. It is important to
understand that the existence of some
randomness in the time dependence of the
dynamical variables after the sharp
components have disappeared does not
imply a totally featureless flow. The
Taylor vortices and Benard rolls persist
in the sense that time averages of the ve-

locity field would reveal their presence
even at very high Reynolds and Rayleigh
numbers. This persistence of such so-
called "large-scale structures" in turbu-
lent flows is very common. They occur in
shear layers, wakes and boundary layers,
and they are believed to be responsible for
some of the noise of jet aircraft.

The sequence of instabilities leading to
turbulence is quite similar in these two
systems. Notably, there are distinct pe-
riodic and quasiperiodics states, and the
number of instabilities preceding the
onset of broad-band noise is quite small.
However, this pattern is certainly not the
only possible one. As we have mentioned,
many flows make a direct transition from
the laminar flow to turbulence without
passing through a sequence of instabili-
ties. Even in the Couette and Rayleigh-
Benard geometries the transitional be-
havior can be quite different from the one
we have described when a geometrical
parameter, such as the ratio of the cylin-
der radii is altered. For example, Guen-
ter Ahlers and Robert Behringer6 of Bell
Laboratories discovered that in Ray-
leigh-Benard convection in fluid con-
tainers with a relatively large ratio of di-
ameter to height (= 57), broad-band noise
occurs in the heat flux just above the onset
of convection; there is no periodic regime
at all. This dependence of even the
qualitative features of the transition
process on a geometrical variable is sur-
prising, and does not offer much encour-
agement for efforts to construct universal
models for the transition to turbulence.

Stability theory

The primary instability of a flow can be
determined by a technique known as lin-
ear stability analysis.1 This method deals
with the effect of a small fluctuation away
from the basic flow that is unique and
stable for sufficiently small R. The
analysis is in terms of normal modes,
which constitute a complete set of eigen-
functions. For example, in circular
Couette flow a fluctuation in the radial
velocity is expressed as a superposition of
Fourier components of the form

A(t)f(r)cos(kz + $)

where f(r) is a function of radial position.
The hydrodynamic equations are linear-
ized in the amplitude of the fluctuation,
and the linearized equations are solved to
determine whether the fluctuation decays
or grows in time for a given R. For small
perturbations the time-dependent am-
plitude has an exponential time depen-
dence,

A(t) = Aue><

and an algebraic equation for y{k,R) is
obtained. Its solution determines those
values of the Reynolds number and
wavenumber k for which the perturbation
will grow, as determined by the condition
that the real component of y is positive,
as indicated in figure 6. For R < RC:
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Re(7) < 0 and the perturbation can not
grow for any wavenumber. At R = Rc a
mode with k = kc, corresponding to the
Taylor vortices, is neutrally stable, with
Re(7) = 0; all other modes decay. UR is
just above Rc, growth can occur for a
narrow range of wavenumbers about kc.

This analysis for Couette flow deter-
mines the numerical values of Rc and kc
in terms of the ratio of radii of the cylin-
ders confining the fluid; similar analyses
have been done for many other types of
instabilities. For some of them the pa-
rameter 7 has a nonzero imaginary part,
which simply indicates that the instability
results in a periodic oscillation of the flow
field. In some systems, however, linear-
ized analysis is not appropriate for the
study of even the primary instability,
because they are stable against infini-
tesimal fluctuations yet unstable against
finite fluctuations; the analysis of such
instabilities is obviously more difficult
and generally needs a nonlinear theory.

The linear analysis just described de-
termines the critical values of the Rey-
nolds number and the dominant normal
mode, but does not describe the finite-
amplitude regime that is reached
asymptotically as t —- °°. To accomplish
this it is necessary to use the nonlinear
dynamical equations. Normal-mode
decomposition is still a useful technique,
but the expansion must be truncated to
obtain a solvable finite set of coupled
equations in the amplitudes of the various
normal modes. Sufficiently near the
neutral-stability curve these equations
can be solved, with the following typical
result.

After a period of exponential growth,
the amplitude of the fundamental mode
with wavenumber kc saturates at a value
proportional to ti/2 for small t where t =
(R — Rc)/Rc. Harmonics with wave-
numbers that are integral multiples of kc
will also have finite amplitudes, because
the nonlinearity couples the various
modes. However, the amplitudes of these
depend on larger powers of«, so that they
become substantial in comparison to the
fundamental mode only when Rc is sub-
stantially exceeded. These predictions
have been quantitatively confirmed by
means of light-scattering methods for
both the Rayleigh-Benard and Taylor
instabilities.

By this time the reader should be in a
position to appreciate the difficulty of
extending this analysis to describe sec-
ondary and tertiary instabilities. The
base flow about which the next pertur-
bation analysis must be performed is
known only as an infinite sum of inter-
acting modes. The stability of this solu-
tion with respect to arbitrary perturba-
tions can be analyzed, and a set of coupled
linear ordinary differential equations is
obtained. This set constitutes an eigen-
value problem for the growth rate of the
secondary instability. This eigenvalue
can be determined numerically to obtain

Contour map of the velocity field in the horizontal plane of a fluid in convection, obtained by laser
Doppler scanning under computer control. The region shown is 14 X 24 mm; the contours are
separated by 100 Hz in Doppler shift, corresponding to 0.5 mm/sec in velocity in increment. The
measured velocity component, directed parallel to the long axis of the figure, has opposite signs
to the left and right of the line for zero velocity, shown as a dashed line. Figure 4

the neutral-stability curve of the secon-
dary instability,9 but it has rarely been
possible to extend this analysis into the
nonlinear regime above the onset of the
secondary instability for hydrodynamic
flows of interest. The methods of non-
linear stability theory are too cumber-
some to give a rigorous explanation of a
sequence of even two instabilities. The
possibility of giving a rigorous explanation
of nonperiodic flow by an extension of this
method appears remote.

How turbulence starts

Even though it is difficult, because of
practical obstacles, to treat sequences of
instabilities by stability theory, we might
still ask what the results would be quali-
tatively if the calculation could be carried
out. In 1944 Lev Landau10 suggested
that an infinite sequence of instabilities
would occur, each adding a new frequency
to the motion. Turbulence, according to
Landau, could be identified with a motion
consisting of a superposition of so many
frequencies that it is "complicated and
confused." In his view there is no well
defined onset of turbulence. Even at
large R, where the flow appears quite
complicated, it is assumed to be a super-
position of periodic modes with generally
incommensurate frequencies—a quasi-
periodic rather than a chaotic flow.

An alternative view of turbulence was
suggested by Edward Lorenz in a 1963
paper entitled "Deterministic Nonper-
iodic Flow".8 A numerical study of a
nonlinear model system (described in the
following section) led Lorenz to suggest
that turbulent flow is genuinely nonper-
iodic rather than quasiperiodic. Lorenz
discussed the implications of the un-
predictability of nonperiodic flow on
long-range weather forecasting. His

paper escaped the notice of most physi-
cists and applied mathematicians for a
decade, but it has subsequently had a
profound effect on the theoretical devel-
opment of the dynamics of nonlinear
systems.

The qualitative difference between
nonperiodic and quasiperiodic behavior
should be emphasized. The essential
feature that distinguishes a nonperiodic
flow from a quasiperiodic flow is the sen-
sitivity of the former to initial conditions:
In a quasiperiodic regime, two flows with
nearly identical initial conditions will re-
main nearly identical for all times, but in
a nonperiodic regime the flows will ulti-
mately evolve quite differently, no matter
how nearly close the initial conditions
were. Tien Yien Li and James Yorke11

used the term "chaos" to describe the er-
ratic behavior characteristic of nonper-
iodic regimes of nonlinear systems; chaos
is now widely used in this sense (and used
it so in this article). Whereas no fluid
flow has been proven to be chaotic, a
classical gas composed of hard spheres has
been rigorously proven to be chaotic.12

A 1971 paper by David Ruelle and
Floris Takens,13 "On the Nature of Tur-
bulence," has also contributed substan-
tially to discussions of the transition to
turbulence. Using considerations based
on the phase-space topology of solutions
to the dynamical equations, Ruelle and
Takens argue that for most flows the
nonlinear interactions would produce
chaotic solutions following three or four
instabilities. They use the term "strange
attractor" to describe the limit set, in
phase space, of these chaotic solutions.

How do experiments compare with the
ideas of Landau, Lorenz, and Ruelle and
Takens? Long sequences of instabilities
resulting in quasiperiodic motions with
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Power spectra of a component of the velocity of fluids in time-dependent Couette flow (left) and
Rayleigh-Bernard convection (right). Different dynamical regimes are observed with increasing
Reynolds number. The upper curves correspond to periodic flow, the middle ones to quasiperiodic
flow with fundamental frequencies fi and f2, and the lower curves to chaotic flow containing both
discrete frequencies and broad-band noise. In the data on the left, f0 is the frequency of rotation
of the inner cylinder of the Couette system (pictured in figures 2 a and b); the inner and outer radii
are 22.2 and 25.4 mm, the height is 62.5 mm. The convection cell is rectangular, with a base 16
X 28 mm and 8 mm in height. The Couette-flow spectra were obtained by R. Fenstermacher and
the convection spectra by S. Benson. Figure 5

many frequencies, as envisioned by
Landau, have never been observed.
However, there have been few experi-
ments that could distinguish between
genuinely chaotic flows and complex
quasiperiodic ones, a distinction that is
profound mathematically but difficult to
make experimentally. Nevertheless, al-
though it appears clear that flows gener-
ally become chaotic after a small number
of instabilities, as Ruelle and Takens
suggested, substantial differences mark
the transition processes of different sys-
tems. These differences can not be pre-
dicted by a universal model.

The Couette and convection flows we
have described become nonperiodic with
the first appearance of broad spectral
features, but these come in so gradually
that most of the spectral energy initially
remains in the sharp spectral components.
Only at much larger R is the flow strongly
chaotic in the sense that all of the spectral
energy is broadband, and only then is the
flow turbulent in the sense generally un-
derstood by workers in fluid dynamics.
Even this flow should perhaps be termed
weakly turbulent; it is certainly not fully
developed, homogeneous, isotropic tur-
bulence.

This distinction between genuinely
chaotic flows and complex quasiperiodic
ones may be irrelevant to understanding

some features of strongly turbulent flows.
In statistical mechanics the averages of
macroscopic quantities can be calculated,
without knowledge of the detailed time
evolution of the system, by introducing
certain statistical assumptions. Simi-
larly, in hydrodynamics it is possible to
calculate statistical averages such as the
position dependence of the mean velocity,
but only by supplementing the equations
with additional assumptions. However,
for these assumptions to be valid it is
usually necessary for the flow to be
strongly turbulent. A deterministic,
nonstatistical approach may be more ap-
propriate for laminar and weakly turbu-
lent flows.

Finite models

Accurate theoretical models of non-
linear dynamical systems are generally
impossible to solve analytically, but some
workers are using numerical techniques
to study nonlinear models with a few de-
grees of freedom. Although these models
are often highly simplified, they may ex-
hibit the qualitative behavior of real sys-
tems. The classic prototype for such
studies is the three-variable model whose
chaotic dynamics Lorenz discovered.

The Lorenz model had its origin in
Rayleigh-Benard convection. The two-
dimensional roll pattern observed above

the critical Rayleigh number is described
by two velocity components and by the
deviation of the temperature from a linear
conduction profile. These three fields
were expanded in two-dimensional Fou-
rier series and substituted into the hy-
drodynamic equations. Keeping only the
lowest-order terms, Lorenz obtained the
following equations:

frtt{y-x)

dy
- = rx-y-xz

dz_

dt
= —bz + xy

where x(t) is proportional to the ampli-
tude of the convective motion, y(t) is
proportional to the temperature differ-
ence between the ascending and de-
scending currents and z(t) is proportional
to the deviation of the temperature profile
from linearity. The constants in the
equations are the Prandtl number a
mentioned above, the Rayleigh number in
units of its critical value, r, and a constant,
b, related to the wavenumber of the fun-
damental node.

The equations of the Lorenz model
represent an extremely severe truncation:
An infinite set of coupled ordinary dif-
ferential equations has been reduced to
three equations. The model therefore
cannot be a realistic one for Rayleigh-
Benard convection significantly beyond
r = 1. However, the Lorenz model is of
intrinsic interest because of its fascinating
mathematical properties. With the
values of a and b chosen by Lorenz, the
system of equations has a stable solution
x = y = z = 0 for r < 1, and two stable so-
lutions,8'14'15

x = y = ±[b(r - =r - 1

for 1 < r < 24.1. In the "phase space"
spanned by the ampli tudes x, y and z (not
to be confused with the spat ial coordi-
nates) , the s tate of the system at any time
is given by the point [x(t),y(t), z(t)]. For
r < 1, all phase trajectories (representing
different initial condit ions) asymptoti-
cally approach a single point , the origin.
Similarly, if 1 < r < 13.9, all trajectories
asymptot ical ly approach one of the two
stable solutions (which correspond to left-
and r igh t -handed rolls).

Between 13.9 and 24.1, J a m e s Kaplan
and his associates15 have found a complex
transi t ional behavior; there is a metasta-
ble s ta te , which can appear chaotic for
arbi t rar i ly long t imes, bu t the system fi-
nally set t les down to a s teady s ta te . For
r > 24.1, all t rajectories are attracted
toward a subspace on which they wander
erratically ad infinitum. This is an ex-
ample of a strange attractor. Many sci-
entists are now investigating the proper-
ties of strange attractors for different
nonlinear systems.

The Lorenz model demonstrates that
chaotic dynamics can be inherent in
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deterministic equations; thus the model
supports the hypothesis that the complex
dynamical behavior called turbulence is
inherent in the hydrodynamic equations
rather than being caused by random in-
fluences or a breakdown of the equations.
Moreover, the Lorenz model shows that
in a strongly nonlinear system only three
degrees of freedom are needed to produce
chaos! It has been conjectured that chaos
in a system with many degrees of freedom
(such as a fluid flow at large Reynolds
numbers) is not qualitatively different
from chaos in a system with a few degrees
of freedom. Investigations of nonlinear
model systems with a few degrees of
freedom are now under way in many areas
of science.2 The hope is that such studies
will lead to general insights into the cha-
otic dynamics of nonlinear systems.

Although there is a real possibility that
models consisting of only a small number
of coupled modes can explain the quali-
tative features of the onset of nonperio-
dicity in systems such as circular Couette
flow and Rayleigh-Benard convection—
particularly when the geometry itself
constrains the number of accessible
modes—quantitative efforts to explain
actual experimental data such as those of
figure 5 by dynamical models with a small
number of modes have been limited to
date. One noteworthy effort to explain
the transition to turbulent convection at
low Prandtl number was undertaken by
John McLaughlin and Paul Martin.14

They constructed a model in the spirit of
Lorenz, carefully selecting a set of 39
coupled Fourier modes. This model
shows both periodic and chaotic states for
reasonable values of the parameters of the
problem. The calculations were not ex-
tensive enough to determine whether
quasiperiodic states were also present.

New tools

It is becoming clear that progress
towards understanding the transition to
turbulence has been limited in the past
because both the mathematical concepts
and the experimental methods have been
inadequate to cope with the complexity of
the problem. The hypothesis that cha-
otic fluid flow may be represented as a
special type of attractor in a dynamical
system depended for its formulation on
recent advances in topology and the
theory of differential equations. The
ability to distinguish experimentally be-
tween chaotic and quasiperiodic flows
depended on such modern experimental
methods as laboratory computers, lasers
and sophisticated electronic signal pro-
cessing. Perhaps these and other new
theoretical and experimental tools will
ultimately yield at least a qualitative ex-
planation of the origins of chaotic fluid
flow.
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