letters

Golfand (elementary particles), A. Kaplan (theoretical physics), M. Khait (theoretical physics), V. Kislik (solid state and nuclear), I. Klein, M. Kushnir, B. Lainer (solid state), V. Lander, B. Levich (chemical physics), M. Liberman, E. Luchemeskaya, N. Meiman (theoretical physics), E. Neimotin, E. Pargamannik, M. Pekker (magnetics), L. Raibshteinas, V. Raiz (biophysics), V. Simanovsky, L. Ulanovsky (astrophysics), G. Volk (biophysics).

The Soviet official to contact is Academician A. P. Alexandrov, President, Academy of Sciences of the USSR, Leninsky Prospect 14, Moscow V71, USSR.

Imprisoned in Czechoslovakia is Vladimir Lastuvka, a nuclear physicist. The official to write to is Dr Gustav Husak, President, Czechoslovak Socialist Republic, Praha-Hrad, Czechoslovakia. Roger Posadas, a theoretical physicist, is imprisoned in the Philippines. Letters should be sent to President Ferdinand Marcos, Republic of the Philippines, Malacanang Palace, Manila, Philippines. C. Pomponiu is being kept from leaving Rumania. The official to contact is Ioan Ursu, President, Council for Science and Technology, Str. Roma #32–34, Bucharest, Rumania.

BERNARD R. COOPER West Virginia University JOHN PARMENTOLA

5/11/78 Massachusetts Inst of Technology

NBS corrections

I read with great interest the article in the May issue (page 101) on my plans to restore scientific strength of the National Bureau of Standards. I wish to correct two statements made in that article.

It was reported that the National Bureau of Standards budget for fiscal year 1979 "... includes a program increase of \$2 million as the *final* (emphasis added) increase of a five-year plan for increasing basic research and rebuilding technical competence." In fact, this \$2 million is the *first* increment of what I hope to be a five-year plan.

In my interview with your reporter, I suggested that the NBS Synchrotron Ultraviolet Radiation Facility, SURF-II, is less desirable for research purposes than similar facilities elsewhere because of its relatively low voltage and current. This statement is in error and, as the staff of SURF-II reminded me with some vigor, a quite opposite situation prevails in the spectral region that it covers. Many other parameters beside electron energy and beam current must be specified to determine the only quantity of real interest to the user, namely the photon flux delivered to the user's specimen. The majority of monochromators currently in place on SURF-II yield flux values comparable to or exceeding those of similar instruments at other synchrotron radiation facilities.

By way of example, a typical grazing-incidence monochromator at SURF-II gives a peak output flux at 100 eV of 10¹⁰ photons/sec-Å. In addition, a new normal-incidence monochromator is to be commissioned shortly whose output flux at 10 eV is expected to be about 10¹¹ photons/sec-Å. Clearly these instruments and several additional instrumented ports offer outstanding and diverse research opportunities to both NBS staff and the research community at large. In fact, I would be pleased to see the research community make some use of this excellent facility.

ERNEST AMBLER
National Bureau of Standards
5/30/78 Washington, D.C.

Space colonies vulnerable

I believe Malcolm Thackray (February, page 83) has misplaced his hope, when he avers that space colonization may enable a segment of humanity to escape the ravages of earthly warfare.

On a practical level, we should recognize that space colonies are extremely vulnerable systems, susceptible to destruction by a variety of means limited only by the ingenuity of the munitions engineer. This has already been underscored by the advancing development of orbital weapons by the Soviet Union (as well as our own efforts). Furthermore, a space colony is not likely to be fully selfcontained, within the means of foreseeable technology, making it uniquely susceptible to blackmail from its earthside providers—or a victim of starvation in the event of catastrophic global war. Need I also speculate on the prospect of nuclear terrorism perpetrated in a space colony by fanatics?

But these hopes are misplaced on a more basic level. Thackray seems to think that international (or even interpersonal) violence is strictly a terrestrial phenomenon, like thunderstorms or earthquakes. This is not so, for the violence in human society springs from human beings themselves. We cannot deceive ourselves into thinking we can "run away" from our legacy as a human society; the legacy will catch up to us as it always has, age after age, continent after continent.

Rather than run away from this fundamental moral problem, we should face it squarely. We, as physicists, share in the responsibility for modern weapons technology, and we should not hesitate to protest and remonstrate with those who propose to bend these discoveries to unconscionable ends. Our colleagues in other countries are subjected to political repression worse than Galileo ever expe-

continued on page 74

9824 BIALKALI 300-650 NM

9798 S-20 200-850 NM

New 30 mm photomultipliers from EMI mechanically and electrically interchangeable with earlier EMI types such as 9524, 9592, 9529. 9824 has a bialkali cathode giving good Q.E. with very low dark current and high gain. 9798 has a UV window which combined with its S-20 cathode gives a wide spectral range (200-850 nm). Either type can be had with spectrosil window for extended UV or low background applications.

For Photon Counting, RFI/QL-30F slimline housings complete with potted divider chain are available for all 30 mm tubes. Available from stock, Details from:

Circle No. 13 on Reader Service Card