
High Pressure

Tem-Pres designs and constructs reactor vessels that accept simultaneous temperatures and pressures far beyond the limits of standard commercial units. Constructed of Rene 41, 316 stainless steel and Unitemp L-605, these vessels meet the needs of both academic and industrial laboratories for elevated pressure and temperature studies.

to 60,000 psi 900°C

- P-V-T studies
- Accelerated Corrosion Testing
- Special Environmental Testing
- . Solubility Determinations
- Electrical Conductivity Measurements
- Syntheses at Elevated Temperatures and Pressures
- Stability and Phase Compatibility Determinations
- High Pressure Differential Thermal Analyses
- Crystal Growth in Neutral or Pressure Media

specialists in high pressure/high temperature research systems

contact R. M Shoff Leco Corporation Tem-Pres Division 1401 South Atherton Street State College, Pennsylvania 16801 Phone: 814-237-7631

Circle No. 26 on Reader Service Card

letters

continued from page 15

It is understood that Pehl's section on lithium-drifting techniques was intentionally descriptive rather than historical; nevertheless, by not citing any references covering the rapid development of large Ge(Li) detectors in the mid-1960's, his account does not convey how great was the impact of the resultant revolution in gamma-ray spectrometry.

The advent of high-purity germanium has simplified the making of detectors, increased their reliability, and made possible complex arrays previously considered impractical. But it was the earlier development of large lithium-drifted devices that was responsible for major advances in all fields of nuclear science dependent on high-resolution gamma-ray measurements.

This was recognized by the American Nuclear Society in 1967 when it made its first Radiation Industry Award to George T. Ewan and Alister J. Tavendale with the citation, "The recipients are honored for their pioneering work in developing large-volume lithium-drifted germanium radiation detectors and applying them to gamma-ray spectroscopy. This work has revolutionized the field of gamma-ray detection and has had a profound effect on nuclear physics and spectroscopy, activation analyses, biomedical applications of radioisotopes and other fields where the availability of high-resolution gamma-ray detectors is of importance. The immediate widespread acceptance of these detectors is a tribute to their superiority over previous gamma-ray detection systems and to the vital importance of this development."

Tavendale (now at AAEC, Lucas Heights, Australia) and Ewan (now at Queen's University, Kingston, Canada) did their work¹⁻³ at the Chalk River Nuclear Laboratories of Atomic Energy of Canada Limited. Tavendale was attached to the Counter Development Section, which, under the leadership of the late I. L. (Dick) Fowler, played a major part in the Ge(Li) revolution.

References

- A. J. Tavendale, G. T. Ewan, Nucl. Instr. & Method 25, 185 (1963).
- G. T. Ewan, A. J. Tavendale, Nucl. Instr. & Methods 26, 183 (1964).
- G. T. Ewan, A. J. Tavendale, Can. J. Phys. 42, 2286 (1964).

G. A. BARTHOLOMEW

Atomic Energy of Canada Limited 12/20/77 Chalk River, Ontario, Canada

Nuclear disarmament

This year sees the twentieth anniversary of the Campaign for Nuclear Disarmament Easter march to Aldermaston. My colleague, Richard Taylor of the University of Leeds, and I are undertaking a study of the CND 1958-65 period. We would very much welcome the opportunity of hearing from any of your readers who were active during this time and who might be willing to help in our study.

COLIN PRITCHARD University of Bath Bath, Avon, UK

3/1/78

More on tenure

There is an absurd hypothesis in letters on tenure such as the one in February (page 83) by Robert Joel Yaes. I would agree with his contention in the last line if he deleted the two words "older" and "young." Nonproductive doesn't automatically mean older. I know of many unproductive assistant and (tenured) associate professors and of many full professors who are extremely active as well as some who are not. Replacing a man with command of a field, vast experience, and research vitality by younger men, who do not demonstrate the same capabilities, simply because they are younger would be idiocy even if they are many times cheaper. Good people are still being hired. The ones who should have gone into less demanding fields and who expect lifetime guarantees simply because they have PhD's have a lot to learn. Nothing in the American system guarantees a particular kind of job for a young graduate. Many aspire to be physicians or dentists or lawyers or movie stars and must settle for something else. Perhaps a junior college would be in order, or industry. A university should keep the ones who are on the frontier and those will continue to be in demand and should be. Happily for me, I'm still young; however, ability has nothing to do with age. If "bright" and "young" go together, and one becomes less bright as one gets older (and everyone gets older), it is important to minimize the problem by picking only superbright new graduates and assistant professors to allow for the eventual degradation. Perhaps a 200 IQ minimum for tenure!

G. ADOMIAN University of Georgia Athens, Georgia

2/27/78

Ultrasonic resolution

The article on computerized x-ray tomography by William Swindell and Harrison Barrett (December, page 32) is a good tutorial on the subject. On page 32 (columns 2 and 3) they call attention to the importance of considering both attenuation and wavelength in optimizing ultrasonic system resolution. However, in describing this resolution, at least one other important parameter should be considered, which is unfortunately often neglected by those designing or using