letters

more diversely and effectively can only bring benefit to society and to physicists themselves.

Reference

7/8/77

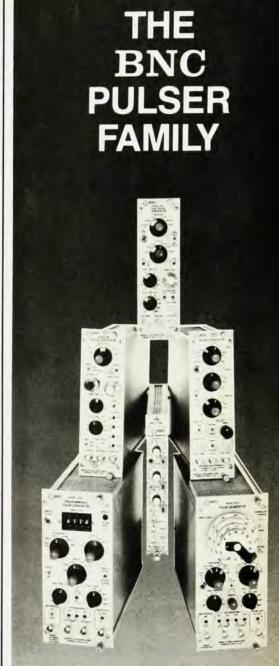
See "Technological Innovation: Its Environment and Management," R. A. Charpie et al., US Department of Commerce, Jan. 1967. Also, "The US Patent System," Herbert Holloman, Scientific American, June 1967, page 19.

LAWRENCE CRANBERG Austin, Texas

More on language requirement

The letter on the "PhD Language Requirement" by Owen Gingerich (November, page 9) was both disturbing and excellent. It was disturbing to learn of the number of schools that no longer have a uniform PhD foreign-language requirement. It was gratifying to read of his concern over the erosion of this significant aspect of graduate education.

His report that astronomy at Harvard has dropped the departmental PhD requirement of preparation in foreign languages brings to mind the correspondence on this subject that I had fifteen or twenty years ago with the Dean of Graduate Studies at Harvard. There was great pressure in our graduate school to abandon our uniform PhD foreign-language requirement, and in support of this move the proponents cited the fact that Harvard had no uniform school-wide requirement. Surely we could do no less than to emulate Harvard. The graduate dean at Harvard replied to my inquiry to the effect that it was true that Harvard did not have a school-wide PhD language requirement for the logical reason that none was needed, because each of Harvard's graduate departments required foreign-language preparation for the PhD degree. Sadly, it appears that this is no longer true, and this leads me to note that the universities that are the great leaders in academic scholarship have a responsibility that they may not have fully appreciated. They should realize that it is the weakest aspects of their programs and requirements that will propagate most rapidly through those other schools that seeks excellence through imitation. We see here the workings of an academic Gresham's Law in which the bad policies drive out the good.


Ten years ago I served as chairman of an ad hoc committee of our graduate school that was charged with making recommendations for the improvement of our PhD foreign-language requirement. At that time we had a "tool" requirement that the student demonstrate skill in two languages that were approved by the student's major department and which were tested through the use of the Grad-

uate School Foreign Language Test. One of the most striking things we found was that our "passing" score corresponded to approximately the second percentile compared with students enrolled in a fourth-semester college course in the language! As a result of our study the faculty of our graduate school adopted a new uniform language requirement in 1968. Under the new requirement the student should be prepared modestly in one language instead of trivially in two. Because we felt that the language requirement should be a mark of education, not of utility, the stress was shifted from the "tool" concept in which the major department identified which languages were acceptable, to a "communication" requirement in which the student chose the language. Under the new rule, Spanish or Portuguese, which are not major languages of scientific publication, could be submitted by physics students because these are important languages of communication in this hemisphere and on this earth. We made a direct approach to the problem that Gingerich cites when he says that it is "particularly difficult to require a language if a student has not mastered a foreign language before graduate school." Our new (1968) PhD foreign-language requirement is fully satisfied if the student's undergraduate college transcript shows a grade of "C" or better in a three-credit fourth-semester course in a language. The graduate student who does not meet the requirement in this preferred way may meet it by enrolling in a fourth-semester college course in a language and earning a grade of "C" or better, or by passing the Foreign Language Test at or above approximately the 30th precentile when the comparison group is students in a fourth semester college course in the language. A detailed report of our study and recommendations is available.1

Shortly after these requirements were adopted, a graduate student in physics expressed to me his enthusiastic approval by noting that he had studied Spanish as an undergraduate because he wanted to teach physics in Latin America, and he was pleased that the new requirement recognized the academic legitimacy of this aspiration.

The new requirements have been in effect for approximately eight years and I believe they are working well.

A few years ago a major force in the guidance of our graduate programs was the need to produce new PhD's in ever increasing numbers to meet the growing demands. One of the costs of that period of pressures "to produce" was the elimination of "frills" such as the PhD foreign-language requirement. These pressures to produce are no longer with us and so now we can focus on quality and on excellence of humane scholarship in the broadest sense. I fully support the recommendation with which Gingerich

NEW CATALOG AVAILABLE

Berkeley Nucleonics has a pulse generator for almost every job. Our pulsers cover a range from economical, general purpose models to programmable, precision ones. The pulsers are versatile and are used in many areas including design, performance testing, and calibration. Get our NEW SHORT FORM CATALOG and meet our family. Phone (415) 527-1121 or write to:

Berkeley Nucleonics Corp. 1198 Tenth St. Berkeley, Ca. 94710

Circle No. 11 on Reader Service Card

Fourier Transform Infrared Spectroscopy VOLUME 1

APPLICATIONS TO CHEMICAL SYSTEMS

Edited by JOHN R. FERRARO and LOUIS J. BASILE

CONTENTS: D. W. Green and G. T. Reedy, Matrix-Isolation Studies with Fourier Transform Infrared. L. D'Esposito and J. L. Koenig, Applications of Fourier Transform Infrared to Synthetic Polymers and Biological Macromolecules. J. B. Bates, Infrared Emission Spectroscopy. P. R. Griffiths, Gas Chromatography and Fourier

Transform Infrared. J. L. Lauer, High-Pressure Infrared Interferometry. J. R. Durig and A. W. Cox, Jr., Current and Past Research in Far-Infrared Interferometry. J. R. Ferraro and L. J. Basile, Fourier Transform Infrared: Applications to National Technical Problems. 1978, 320 pp., \$25.00/£16.25 ISBN: 0-12-254101-4

Gaseous Electronics VOLUME 1

ELECTRICAL DISCHARGES

Edited by MERLE N. HIRSH and H. J. OSKAM

CONTENTS: S. C. Brown, A Short History of Gaseous Electronics. Glow Discharges at DC and Low Frequencies: J. H. Ingold, Anatomy of the Discharge; A. Garscadden, Ionization Waves in Glow Discharges. L. M. Chanin, Nonuniformities in Glow Discharges: Electrophoresis. L. M. Chanin, Nonuniformities in Glow Discharges: Cataphoresis. A. D. MacDonald and S. J. Tetenbaum, High

Frequency and Microwave Discharges. M. Goldman and A. Goldman, Corona Discharges. E. Pfender, Electric Arcs and Arc Gas Heaters. G. Yonas and A. J. Toepfer, Relativistic Electron Beam Produced Plasmas. P. Bogen and E. Hintz, Shock Induced Plasmas.

1978, 528 pp., \$39.50/£25.65 ISBN: 0-12-349701-9

Unitary Symmetry and Elementary Particles

SECOND EDITION

By D. B. LICHTENBERG

The Second Edition of this widely used work incorporates the important new discoveries and concepts in elementary-particle physics made during the eight years since publication of the first edition. The book discusses symmetry in elementary particle physics as well as the connection between symmetry and conservation laws. It expounds the basic ideas of group theory (including group representations), the principal mathematical tool

for studying symmetry. Simple Lie groups and Lie algebras are studied, with emphasis on the special unitary group in n dimension SU(n), or, more simply, unitary symmetry. Methods using Young tableaux and raising and lowering operators are stressed because they work in any number of dimensions.

1978, 288 pp., \$23.00/£14.95 ISBN: 0-12-448460-3

MONOGRAPHS IN PHYSICAL MEASUREMENT NO. 1

Frequency and Time

By P. KARTASCHOFF

This book opens with a detailed discussion of the characterization of frequency and phase (time) fluctuations, introducing statistical measures such as spectral densities and limited sample variances. Then follows a review of the properties of stable frequency generators using quartz crystal and various types of atomic resonator, and a description of frequency processing methods such as multiplication, division and synthesis. Time scale definitions and clock operation, including the complex hierarchy of international coordination of time scales,

conclude the introductory part of the text. There is new and detailed coverage of the various methods and principles of instruments for frequency and time measurements, including digital counters, phase comparators and means for spectral density measurement. Finally, many present and potential applications of time/frequency technology are illustrated in a wide review of radio signal time and frequency comparison methods.

1978, 280 pp., \$24.50/£12.50 ISBN: 0-12-400150-5

Induced Representations in Crystals and Molecules

POINT, SPACE AND NONRIGID MOLECULE GROUPS

By SIMON L. ALTMANN

CONTENTS: Operators and Symmetry Operations. Basic Definitions for Groups. Presentations. Group Products and Frequencies. Cosets. Projective Representations. Space Group Operations. Representations of the Translation Group: Bloch Functions. The Linear Chain. The Ground Representation. Subduced and Induced Representations. Frequency and Equivalence Theorems Transivity of In-

duction. The Mackey and Related Theorems. Little Groups and Orbits. Intertwining Numbers and Little Groups. Irreducibility and Completeness of the Induced Representations. The Reduction of Space Groups. Selection Rules in Crystals. Semidirect Products and Their Reduction. Molecular Symmetry and the Groups of Nonrigid Molecules. 1977, 388 pp., \$35.25/£18.00 ISBN: 0-12-054650-7

Quantum Chemistry

By JOHN P. LOWE

CONTENTS: Classical Waves and the Time-Independent Schrödinger Wave Equation. Quantum Mechanics of Some Simple Systems. The One-Dimensional Harmonic Oscillator. The Hydrogenlike Ion. Many-Electron Atoms. Postulates and Theorems of Quantum Mechanics. The Variation Method. The Simple Hückel Method and Ap-

plications. Matrix Formulation of the Linear Variation Method. The Extended Hückel Method. The SCF-LCAO-MO Method and Extensions. Time-Independent Rayleigh-Schrödinger Perturbation Theory. Group Theory in Quantum Chemistry. Qualitative Molecular Orbital Theory. 1978, about 675 pp., in preparation ISBN: 0-12-457550-1

Send payment with order and save postage plus 50¢ handling charge.

Prices are subject to change without notice.

ACADEMIC PRESS, INC.

A Subsidiary of Harcourt Brace Jovanovich, Publishers 111 FIFTH AVENUE, NEW YORK, N.Y. 10003 24-28 OVAL ROAD, LONDON NW1 7DX

Circle No. 12 on Reader Service Card

letters

closes his note: "I think that this group [PhD students] could be required to obtain some degree of mastery of a foreign language."

J. Robert Oppenheimer, speaking at the University of Wisconsin in May, 1959,² expressed the need most eloquently:² "Civilization, all we are, all we know, all we can do, rests on our power to tell each other about things. We do that in more ways than words; but if we do not do that, we are not human."

References

- A. A. Bartlett, Foreign Language Annals 2, 174 (1968).
- G. T. Seaborg, A memorial to Oppenheimer, PHYSICS TODAY, October 1967, page 48.

ALBERT A. BARTLETT University of Colorado Boulder, Colorado

12/2/77

As a physicist who has studied some fifteen languages, I would like to make one comment to Owen Gingerich's letter: let us make up our mind as to what kind of a "Doctor of Philosophy" we want to produce. If we are satisfied with a narrow specialist who, for the rest of his life, will be rewriting his thesis, then a foreign language is an expensive luxury. (So is quantum mechanics and electromagnetic theory for those who limit themselves to celestial mechanics, and vice versa.) I believe that we have already produced a statistically significant sample of that kind of a PhD: a sentence without an elementary spelling error is a rarity, 40% of speech consists of "you know," and Pericles is a part of the digestive tract.

If, on the other hand, the words "Doctor" and "Philosophy" are to have any meaning at all: in other words, if we want to produce an educated person, then knowledge of foreign languages becomes an absolute necessity for several reasons.

First, language is more than a bunch of words: it is an artist's medium. Even if words can be translated reasonably well, the entire message can't. Homer is Homer only in Greek, Goethe in German and Hasek in Czech. If you doubt it, then listen to a "Western" in Russian!

Second, foreign languages are one of the few remaining fields of study where the pupil cannot talk his way out of a problem. "Ich habe gefahrt" is wrong, no matter what point of view you like. Compared with exact sciences, linguistics has the advantage that rules cannot be derived or proven: they must be learned and followed. I know of no better way to discipline the mind.

My final point may come as a surprise to many readers: going to a foreign country and not making an effort to speak the language of the host is a sign of arrogance. (The "Ugly American" image may have started right here.) It is likely that the host will offer changing into English; it is also likely that this offer will be made for the guest's convenience, and not at all in order to show him that the natives are better educated than he is: but according to good manners, the switch to English should be suggested by the host, not by the guest. If you don't think so, then imagine, say, a Hungarian representative coming to General Motors in Detroit and expecting that dealings will be carried out in Hungarian. You may, of course, argue that America is bigger than Hungary: but that proves my thesis about arrogance.

Z. F. DANES University of Puget Sound

Tacoma, Washington

2/2/78

I would like to enter a plea in support of Gingerich's argument for the retention of the language requirement as a traditional prerequisite for a PhD. As an American living and working in Europe, I am continually struck by the provincialism of American scientists visiting here. The academic consequences of this are usually masked by the technical excellence of their work, but nevertheless, a subtle communication block is imposed.

There is another reason for retaining the language requirement, at once less obvious and more powerful. Alas, I fear it can not be comprehended by anyone who has not gone through the agony of trying to communicate in a language not his own. It is only after experiencing that process that one fully understands the limitations with which persons of non-English mother-tongue must struggle when speaking English to us, despite their apparent fluency. A simple "yes" may well mean "I hear your words and I think I am on the right track, and maybe if you keep talking I will understand what you are trying to say," rather than agreement or comprehension.

Let's not forget there is more to life than mastery of a single technical specialty.

> K. A. GEIGER Cryophysics SA Geneva, Switzerland

12/13/77

Rarely have I seen such insularity as drips from Gingerich's condescending conclusion—"students should obtain some degree of mastery in a foreign language, if only as a concession to the historical origins and image of the scientific enterprise"—to a letter summarizing the uselessness of such mastery. A typical phrase: "Even though 15 years ago a large proportion of German and French articles were represented in the literature, today this is irrelevant to the majority of current research." It would appear that Gingerich anticipates that the trend toward predominantly English-language

EMI GENCOM PMT HOUSINGS FOR

- : Broadband Photon Counting
- : General Lab Use
- : O.E.M. Applications

EMI Gencom PMT Housings are unsurpassed for flexibility, ease of use, litetite construction, and RFI shielding. They are designed by engineers with years of Photomultiplier Application experience.

The "B" type shown above uses the unique Bayonet Lock, is available in STD and RFI versions, with and without flange and provides space for ACDC Power Supply if required. It accommodates all EMI 2" tubes and some competitive types.

The QL-30 is similar in design and fits all EMI 1-1/8" tubes. When supplied less flange, the slim line design allows compact packaging for OEM use. RFI shielded version available.

The new "S" Housing for side looking (squirrel cage) PMTs fits all tubes of this type, EMI or others. STD or RFI shielded versions available.

All of these new designs give improved performance at lower cost. Available from Stock.

Detailed data from:

EMI GENCOM INC.

80 Express St. Plainview, New York 11803 Tel (516) 433-5900 TWX 510-221-1889

Circle No. 13 on Reader Service Card

New Advanced Texts

McGraw-Hill International Book Company

Creation and Annihilation Operators

John Avery, University of Copenhagen

Written to provide an introduction to the use of creation and annihilation operators, this text shows how second quantization can be applied to molecular physics, quantum chemistry, solid state theory, and the quantum theory of radiation. The book discusses the group theoretical properties of many-fermion wave functions and introduces quantum electrodynamics. The coverage of the random phase approximation and Bogoliubov-Tyablikov transformation are included.

ISBN 07-002504-5 1977 221 pp. \$23.00

Group Theory and General Relativity

Moshe Carmeli, Ben Gurion University of the Negev

International Series in Pure and Applied Physics
This highly topical treatise contains not only an
extensive discussion of the theory of general relativity from the point of view of gauge fields but also
brings together, in one volume, many scattered
original works on the use of group theory in
general relativity.

ISBN 07-009986-3 1977 391 pp. \$29.00

Aeroacoustics

Marvin E. Goldstein, NASA-Lewis Research Center

The author has written the first book specifically devoted to aeroacoustics. The book emphasizes a physical understanding and systematic development of the subject from basic principles. It covers the most recent developments in the field, presents a highly unified treatment of the subject by limiting the scope specifically to aeroacoustics, and treats related subjects where applicable. All important theories and basic sciences in the field are included, and experimental results are presented to verify and augment the basic theory.

ISBN 07-023685-2 1977 293 pp. \$28.00

Solid State Quantum Chemistry:

The Chemical Bond and Energy Band in Tetrahedral Semiconductors

Alexander Levin, Academy of Sciences, Moscow Translated from the Russian, this monograph is the first to be published on the new and important subject of bonding in solids. The main research objective of the book is the investigation of the dependence of the crystal band structure on properties of atoms and interatomic interaction. A brief account of the basic concepts of quantum chemistry and the bond theory of solids is given, followed by a systematic consideration of bonding and electronic structure of the simplest solids. Covalent crystals and tetrahedral semiconductors are also covered.

ISBN 07-037435-X 1977 249 pp. \$24.00

Raman Spectroscopy

D. A. Long, University of Bradford

A comprehensive survey of the entire subject of Raman Spectroscopy, this up-to-date survey unifies the basic theory of the subject, illustrates the application and potential of the technique, and guides the reader towards specialist literature in the field.

ISBN 07-038675-7 1977 276 pp. \$24.50

A Guide To Feynman Diagrams In The Many-Body Problem, Second Edition

Richard D. Mattuck, University of Copenhagen Feynman diagrams, long famous for their success in elementary particle physics, provide a powerful pictorial method of solving many-body problems. Two new chapters and many new sections are added to this edition to show in mathematical detail how typical many-body calculations are carried out with Feynman diagrams.

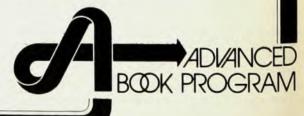
ISBN 07-040954-4 1976 429 pp. \$21.50

Phase Transitions In Solids: An

Approach to the Study of Chemistry and Physics of Solids

C. N. R. Rao and K. J. Rao, Indian Institute of Technology

Providing a unified picture of the wide area of phase transitions, this book covers the basic theory, structural aspects and material properties of the subject. Case studies of several systems illustrate how phase transitions are analyzed in real situations. Important literature references are cited and results from various techniques are discussed.


ISBN 07-051185-3 1978 330 pp. \$34.50

Compton Scattering: The Investigation of Electron Momentum Distribution Edited by Brian Williams, University of Strathclyde

This standard reference work puts Compton Scattering into a historical perspective, discusses the discovery of the effect, and traces its development to the present. The theory of the Compton effect is discussed in detail by scientists actively engaged in research in the field. The book covers experimental techniques, the effect of multiple scattering on Compton profile, and results of Compton scattering studies.

ISBN 07-070360-4 1977 368 pp. \$34.00

All prices are approximate. These titles are available through your usual supplier, your local McGraw-Hill representative/company, or L. C. Stanoch, Room 3064-61, McGraw-Hill International Book Company, 1221 Avenue of the Americas, New York, New York 10020, U.S.A.

letters

publication will be followed by requirements that all science courses, everywhere, be taught in English; that all students, everywhere, learn English well enough that visiting American professors need only give their colloquia, and conduct their scientific discussions, during a sabbatical year, in English; and that all shopkeepers and restaurateurs learn sufficient English to equip and feed those who arrive to educate, not to learn from, "the out-of-date natives."

On the one hand, Gingerich stresses the preprints of the most current scientific papers which keep his own work à la mode; on the other hand, he mentions those European scientists who were concerned that their past work was being simply rediscovered in that current work to which he refers. This would seem to be an amplifying situation, unless indeed one prohibits all past, present, and future non-anglicized work and references. I remember Bruce Billings-a predecessor of Gingerich at the American University in Beirut-once telling me that all kinds of PhD theses could be inspired by reading der Annalen der Physik of 50 years past. In my own scientific wanderings, I have more often found myself simply wistful, in a scientific interchange (especially, a dispute) at the language nuances I did not know, which inhibited better and more current learning from that interchange, than I was content that in some years I could read all this in an Englishlanguage journal or translation. Gingerich stresses preprints to remain au courant: myself, and most of my colleagues interested in frontier curiosity, rather than à la mode state-of-the-art computing algorithms, depend as much on discussion and letters-in "their," rather than "my" language—intercountry or interdiscipline.

Gingerich's left-handed defense of the language requirement, as a concession to historical origins and image, subordinates language learning, as a necessary part of a global curiosity in a whole world-of geography, of ideas. (Most of my colleagues will realize I write this letter in envy of, rather than in facility with, such language fluency: non-English or En-

glish.)

12/13/77

R. N. THOMAS Institut d'Astrophysique Paris, France

THE AUTHOR COMMENTS: The wide spectrum of well-argued responses to my letter on PhD language requirements demonstrates that this is still a highly controversial topic. In retrospect, although I still believe that nowadays it is difficult to justify a foreign language as a working tool for the astronomy or physics PhD, I would have emphasized far more strongly its desirability as a communications link in the international network of science. As an active historian of astronomy, my curiosity ranges far beyond preprints, and I am acutely aware how a greater knowledge of both ancient and modern languages would provide richer insights into the intellectual movements that make up our scientific heritage. A broader ability to communicate in tongues other than English would have greatly alleviated innumerable moments of frustration I have felt in the past several years during my visits to over 80 foreign libraries and observatories. I regret that my tone may have seemed wistful or insular because I favor a language requirement, and I heartily endorse the Boulder scheme of justifying a foreign language as a communication device rather than as a research tool.

OWEN GINGERICH Harvard-Smithsonian Center for Astrophysics 2/21/78 Cambridge, Massachusetts

Invention of the laser

I was horrified to read on page 32 of the November issue that "Optical communication started in earnest when Arthur Schawlow, Charles Townes, A. M. Prokhorov and Robert Dicke invented the laser in 1958." This attribution of credit for the invention of lasers by Hans Melchior does not contribute anything to his subject-optical communications-but it does injustice to several scientists who had contributed at least as much as some included in the above list. I am thinking first of all of Theodore Maiman and Ali Javan, who made the first solid and gas lasers respectively in 1960, but there are several others. For the history of the inventions I refer to American Journal of Physics 34, 903, 1966. It is an involved matter and a controversial subject that cannot be settled in a few lines.

BELA A. LENGYEL California State University Northridge, California

THE AUTHOR COMMENTS: Bela Lengyel's endeavor to give proper recognition to all the scientists who contributed to the invention and the realization of the laser is certainly appreciated.

HANS MELCHIOR Swiss Federal Institute of Technology Zurich, Switzerland 1/9/78

Ge(Li) revolution

12/8/77

Richard Pehl has written an informative account (November, page 50) of the characteristics and applications of germanium gamma-ray detectors with emphasis on the newer types made from high-purity material.

continued on page 48

a good can be very rewarding

And you can get a GOOD COLD (room temperature to 10 kelvin) in about half an hour, with an LTS-21 Series closed cycle refrigerator system. Depending on the system you choose, your cold can be stable to ± 0.5 kelvin or to ± 0.003 kelvin. You can even get two colds at the same time for a lot less money than ever before.

The new universal compressor supplied with all LTS-21 systems can power two cold heads simultaneously without sacrificing performance.

Features:

- Fast cool down (300 K to 10K in about half an hour)
- Smaller size
- State-of-the-art instrumentation
- System flexibility
- Capability to operate two cold heads simultaneously from one compressor
- Long maintenance interval

To learn more about a GOOD COLD write or call:

In Europe: Cryophysics

Berinsfield, England (856) 340257

Geneva, Switzerland (22) 329520

Darmstadt, W. Germany (6151) 74081 Versailles, France (1) 9506578

In North America:

P.O. Box 29876 Columbus, Ohio 43229 (614) 846-1250 Telex: 24-5415 Cryotron Col

Circle No. 15 on Reader Service Card