letters

esting one with potentially profound implications in the future. The question is, how far in the future—is there really a need for a tape depository now? AIP would be very interested to hear from other physicists who see a need for this type of depository, particularly those who might use deposits as opposed to making deposits.

The present PAPS depository is accumulating at the rate of about four or five deposits per month. The majority are indeed computer-generated tabular data. But whether such data would or could be used as part of the input to other physicists' computer programs, or directly to "look up" particular values, is perhaps not obvious. Besides, a substantial number of the deposits are in categories such as extensive details of mathematical proofs, detailed descriptions of experimental apparatus and procedures, and so on. The rate at which copies of deposits are presently being ordered by users is about 10 to 20% of the deposit rate.

Mirman and Schindler mention some of the technical questions that would have to be settled in creating a tape depository. There are also problems with the long-term security and integrity of tape archives. And, of course, there is the cost factor. In principle PAPS could be used as a depository for any reproducible materials, and the question of a computer-tape depository will be brought before AIP's Publications Board (the editors of all the journals published by AIP).

ELLIOT PLOTKIN
A. W. KENNETH METZNER
Publications Division
American Institute of Physics
12/22/77
New York, New York

Request for help

We have recently formed a small department specializing in solid-state physics. We badly need journals, books and equipment. Donations, as well as low-priced offers, would be most welcome. Please write to: Coordinador, Depto. de Fisica, Instituto de Ciencias de la Universidad Autonoma de Puebla, Apdo. Postal J-48, Puebla, Pue. Mexico.

R. BAQUERO
Instituto de Ciencias
Universidad Autonoma de Puebla
12/15/77 Puebla, Pue. Mex.

More recognition of teachers

It is about time that the problem of recognition for teaching is faced squarely, and I am happy to see the letter by M. A. Ijaz in these columns on this very important subject (August, page 11). Lack of interest on the part of university administrators to evolve any kind of guidelines

to recognize teaching is a universal disease which is crippling the field of education not only in the US but in the entire world. Having a long tail by way of publications, however mediocre they may be, has become a sine qua non condition for getting promotions for faculty in all disciplines, not just in physics. A clever person gets this tail to be very long by publishing the same material as a letter, a paper at a conference, an internal report and finally as a review or a chapter in a book, if luck favors him. Of course, a dedicated researcher will never stoop to doing such things, just as a dedicated teacher will never stop updating his lecture notes. But, then, both species are fast becoming rarer commodities these days, but for entirely different reasons. A dedicated research scientist is forced to abandon his chosen path of intellectual pursuit because the system under which he functions requires that he beat his drum as loud and as fast as he can to catch the eyes of the powers that be. On the other hand a dedicated teacher abandons his chosen path because it has become a pathological obsession with university administrators to ignore teaching and to recognize mediocre research output as something desirable.

When such is the situation in the developed nations, what can one say about developing nations that unwittingly or deliberately choose to ape the methodologies of the developed nations? While the developing nations are in step now with the so-called developed nations in so far as ignoring teachers is concerned, they have gone one step further (like adding insult to injury) by discriminating For example in amongst researchers. some countries university authorities ask their faculty to indicate the number of papers published in foreign journals in contrast to the local journals, and the weight is always in favor of publications in foreign journals. Of course they are perpetrating this slavish attitude under the guise that "science is international."

Swami Vivekananda, a pragmatic-saint of Old India, has summed up the value of the student-teacher interaction as fol-"One should live from his very boyhood with one whose character is like a blazing fire and should have before him a living example of the highest teaching." The basic tenet of the old Indian educational system was the recognition of teacher as equal to God. It is a pity that India, which has established laudable traditions in recognizing the value of its teachers to the development of its society, is fast slipping in its mad rush to catch up with the so-called developed nations. I should say we really have caught up, because in India also, these days, a mediocre research scientist is considered superior to even the best teacher.

And now we are hearing voices from the developed nations such as the US protesting the injustice done to its teachers.

If your application requires only moderate power, ENI's new Model A150 will do the job. All it takes is a laboratory signal generator and you've got a perfect match for RFI/EMI testing, NMR/ENDOR, RF transmission, ultrasonics and more. Capable of supplying more than 150 watts of RF power into any load impedance, the A150 covers the frequency range of .3 to 35 MHz.

We could mention unconditional stability, instantaneous failsafe provisions and absolute protection from overloads and transients, but that's what you expect from any ENI power amplifier, and the A150 is no exception!

For additional specifications, a demonstration, or a copy of our new, full-line catalog, contact ENI, 3000 Winton Road South, Rochester, New York 14623. Call 716-473-6900 or Telex 97-8283 ENI ROC.

ENI

The World's Leader in Power Amplifiers

Circle No. 13 on Reader Service Card

ANALYZE YOUR OWN DATA. IN REALTIME.

With Honeywell's new SAI-48 correlator, you don't have to wait for a data processing department to run your data. Because this powerful statistical processor computes correlation, enhancement and probability functions while your experiment or test is still in progress. This lets you interact with your experiment, trying different approaches and immediately noting the effect of each change.

Along with this convenience, you get a level of performance no other correlator and signal averager can match. For monitoring rapidly changing high-frequency data, the SAI-48 offers built-in sampling rates to 20 MHz. Minimum tau spacing of 100 nanoseconds—usable to 50 nanoseconds—gives you correlograms with unexcelled resolution.

For recovering periodic waveforms buried in noise, this instrument signal averages from 1 to

131,000 sums. It even serves as a useful transient-capture device with full 400-point sampling capability, 100-nanosecond resolution and signal-to-noise improvement (with averaging) in excess of 51 dB.

So whether your application involves turbulence and acoustic analysis, laser light scattering correlation, time-of-flight determinations, or similar types of signal processing, we have the instrument to do the job efficiently and economically. For detailed information on the Honeywell signal analyzer most appropriate for your work, call Frank Kasper at (303) 771-4700. Or write for technical information on the SAI-48 and our free illustrated brochure that describes all our signal analysis products, magnetic tape systems and oscillographic recorders. Honeywell Test Instruments Division, Box 5227, Denver, CO 80217.

WE'LL SHOW YOU A BETTER WAY.

Honeywell

Circle No. 14 on Reader Service Card

letters

11/23/77

Will the other countries of the world take a cue even now and do something about the lot of their teachers and restore the dignity of teaching as a profession? In my considered opinion, it is the fundamental right of a person to opt for teaching and/or research, and it is the bounden duty of university administrators to evolve guidelines to reward teachers and researchers on their own merits, but not one at the expense of the other.

S. V. PAPPU Indian Institute of Science Bangalore, India

The Tale of Schrödinger's Cat

Schrödinger called his cat and said, "You can be both alive and dead, For a linear combination of states Postulates two simultaneous fates."

Poor shocked pussy could not say, "I shall inform the SPCA.
Your pet theory seems to me
An ultraviolent catastrophy."

What then did his kitty do? She looked at him and said "µ."

> M. KOCHER Corvallis, Oregon

10⁻³ mistake

1/19/78

The first figure and caption of the article "Critical-point Universality and Fluids," by Anneke Levelt Sengers, Robert Hocken and Jan V. Sengers in the December issue, truly took away my breath. That such a complicated seven-layered thermostat is capable of only 20 mK temperature control seems an unsurpassed feat of un-design. Or may somebody along the line have been unaware of the difference between m (milli-), standing for 10^{-3} , and μ (micro-), standing for 10^{-6} ?

ANNEKE LEVELT SENGERS
National Bureau of Standards
Washington, D.C.

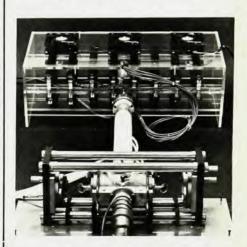
Einstein unemployable today

With the recent discoveries of J and upsilon particles, many new quarks and gluons have now been postulated but none of them has yet been observed. The situation has prompted Martin Perl to call for a new Albert Einstein at the recent APS meeting in San Francisco. A similar call has also been made by the director of Fermilab.

However, with our present emphasis on research programs, it is quite possible that Einstein could not survive today. He would have great difficulty formulating a research program involving relativity, the

photoelectric effect and Brownian motion simultaneously. Indeed, it would be almost impossible for him to justify the coherence of such a research program. Paradoxically, his accomplishment was less impressive when he did have a well-planned and comprehensive research program in unified field theory.

With high unemployment (9% in 1974, 13% in 1975) among new graduates, employes can afford to be very choosy. With very scientific matchings of candidates and jobs by computers, young physicists often must work along the lines of their thesis research. Under present conditions, J. Willard Gibbs would be forced to work on "the form of the teeth of wheels in spur gearing" forever, and Ernest Lawrence on the photoelectric effect of metal vapors. If these events had occurred, the losses to physics would be very grave indeed. Under present conditions, Einstein would not qualify for his patent-office job, and would be denied financial security even at a very modest level. According to Banesh Hoffmann,1 Haller (the director of the Swiss Patent Office at Bern) called Einstein for an interview, which quickly revealed Einstein's lack of relevant technical qualifications; but as the interview continued its gruelling two-hour course, Haller began to realize that there was something about this yound man that transcended technicali-


We all recognize the importance of scientific planning in research. There are many outstanding successes of well-organized research programs, such as the search for transuranium elements following the discovery of neptunium and plutonium during the Manhattan Project and the biological code research following the experiments with cell-free systems. (However, the search for biological codons was finished after only three years, 1961-64). At the same time, there is also the real danger of over-planning and overly scientific research programs, leading to the tendency of putting the same problem on a slightly bigger computer for a slightly more accurate an-

In some respects, perfection and obsoleteness may be regarded as complementary variables in the Heisenberg uncertainty principle. There are examples where a perfect weapon is also an obsolete weapon. The most powerful and most heavily protected battleships, Yamato and Musashi of the Imperial Japanese Navy, never accomplished much. Similarly, a perfect research program may also be an obsolete program. According to Lessing,2 it does not follow that big creative breakthroughs are made by the big budgets and the big research staffs. For example, xerography came out of the home workshop of a patent lawyer, not from the duplicating machine industry. Let us remember that bureaucracy can continued on page 98 New!

First commercially-available

cw HF/DF Chemical Laser from

HELIOS INCORPORATED

Performance:

- 10W (8W) multi-line output power with HF (DF) †
- 2W (0.3W) single-line
- complete system, reliable, easy to operate
- uses easily-handled gases (†Typical. For higher power applications, ask about our Model CLII.)

Applications:

- 2.7 (3.8) micron probe, singleline, single-mode, high stability
- Medium power mid-IR source for experiments with detectors, optical materials/coatings, lidar, P&T systems, IR spectroscopy, laser photochemistry, optical pumping, and solid state physics.

HELIOS offers a state-of-the-art laser system, a complete range of access-ories, fast delivery, field installation, and individual service with every system delivered.

For a complete brochure on the CLI system, contact:

HELIOS INCORPORATED 1242 Bramwood Place Longmont, CO 80501

303-772-3999

Circle No. 15 on Reader Service Card