Applied Physics Letters,

The following is the Table of Contents from a recent issue of APPLIED PHYSICS LETTERS:

Vol. 32, No. 7, 1 April 1978 **Applied Physics Letters** Scattering of light from Rayleigh waves B. Arad, S. Eliezer The significance of the distribution of hot spots on the interpretation of laser produced plasma experiments M.J. Weber, C.F. Cline, W.L. Smith, Measurements of the electronic and nuclear contributions to the 403 D. Milam, D. Heiman, nonlinear refractive index of beryllium fluoride glasses R.W. Hellwarth Continuous room-temperature operation of Ga(1-x)Alx As-GaAs double-R.D. Dupuis, P.D. Dapkus 406 heterostructure lasers grown by metalorganic chemical vapor deposition R.A. Soref, A.R. Nelson, 408 Active fail-safe terminal for fiber-optical data bus D.H. McMahon, W.B. Spillman, Jr., L.E. Sheppard C.P. Lee, S. Margalit, I. Ury, GaAs-GaAlAs injection lasers on semi-insulating substrates using laterally 410 diffused junctions J.D. Campbell, M.H. Yu, C. Wittig 413 Collisionless production of $C_2(a^3\pi_u)$ in an intense infrared laser field AlGaAs-GaAs double-heterostructure small-area light-emitting diodes by T.P. Lee, W.S. Holden, A.Y. Cho 415 H.J.J. Seguin, A.K. Nam, J. Tulip The photoinitiated impulse-enhanced electrically excited (PIE) discharge 418 for high-power cw laser applications Alan C. Eckbreth 421 BOXCARS: Crossed-beam phase-matched CARS generation in gases Influence of molecular dissociation and degree of ionization on rare William L. Nighan 424 H. Pummer, J. Eggleston, Ultraviolet absorption of CF, I induced by excitation of the P, vibrational 427 mode at 9.6 µm W K Rischel C.K. Rhodes B.S. Kawasaki, D.C. Johnson, Bandwidth-limited operation of a mode-locked Brillouin parametric 429 Y. Fujii, K.O. Hill I.F. Chang, P.Y. Yu Laser modulation of electroluminescence in thin-film ZnS:Mn devices 432 R.A. Chapman, M.A. Kinch, Hg. - Cd., Te charge-coupled device shift registers 434 A. Simmons, S.R. Borrello, H.B. Morris, J.S. Wrobel, D.D. Buss M.K. Konkin, J.G. Adler Instabilities in thin tunnel junctions 436 O.L. Krivanek, T.T. Sheng, A high-resolution electron microscopy study of the Si-SiO2 interface 437 Hydrogenation and dehydrogenation of amorphous and crystalline silicon J.I. Pankove, M.A. Lampert, 439 M.L. Tarng T-P Ma, W.H-L. Ma 441 Low pressure rf annealing: A new technique to remove charge centers in MIS dielectrics Nonequilibrium response of MOS devices to linearly varying voltages A.G. Nassibian, L. Faraone, J.G. Simmons An InGaAs detector for the 1.0-1.7-µm wavelength range K.J. Bachmann, J.L. Shay 446 449 **CUMULATIVE AUTHOR INDEX**

Order your subscription today with order form below.

I also found the treatment of the optical properties of cholesterics to be an insightful and humane approach to a subject with potential for mathematical complexity. I especially enjoyed the discussion of light scattering from cholestrics and comparison with C. G. Darwin's dynamical theory of x-ray diffraction and the anomalous increase in x-ray transmission near Bragg reflections (the Borrmann effect). The chapter on smectics contains even less than de Gennes's chapter in spite of being written three years later; however, this is an area of relatively little understanding and rapid progress so it is perhaps better saved for a second edition of the book.

Overall, Chandrasekhar's monograph is well written, remarkably free of typographical errors, and especially for the uninitiated, often easier to follow than de Gennes. I recommend that both books should be in institutional collections and the personal libraries of researchers interested in the fundamental physics of this interesting state of matter.

J. David Litster has been involved in light scattering and x-ray scattering studies of liquid crystals for about eight years. He is a professor of physics at the Massachusetts Institute of Technology.

Thermal Conduction in Solids

R. Berman

193 pp. Oxford U.P., New York, 1976. \$20.50

Soon after World War II, the late Professor Sir Francis Simon initiated research at Oxford on the low-temperature thermal conductivity of insulators, in the hope that this property would yield information about defects in non-metals in the same way that electrical conductivity was being used to study defects in metals. Robert Berman has carried out such measurements at the Clarendon Laboratory for three decades. His studies and those of other groups, as well as the theoretical work to interpret these measurements, have yielded a rich harvest.

Berman, in this rather compact book, has described the microscopic physical processes involved and discussed the essential experimental results and their interpretation. A large part of the book is devoted to heat conduction by phonons in insulators, with special attention given to the role of normal three-phonon processes, and to the important defects that reduce the thermal conductivity. An extensive section on amorphous solids discusses this difficult subject in depth, as well as can be done at present. Electronic thermal conduction in metals is treated, including the role of electron-phonon

Umklapp processes and the low-temperature Lorenz ratio. The lattice component of thermal conduction in metals and alloys is discussed, but there is only the briefest treatment of superconductors, and semiconductors are covered mainly with respect to some low-temperature properties.

Although ordinary and high temperatures are certainly mentioned, the emphasis is on low-temperature properties, and on the special solids that have played a large role as models to illustrate physical principles (solid helium, lithium fluoride and other alkali halides, monovalent metals, but diamond is surprisingly omitted). The technically important materials and higher temperatures receive less attention, and this is perhaps as it should be in this small volume, which emphasizes the basic interaction processes and their illustrations. The book would therefore be a good companion text in a basic solid-state physics course, covering in depth a field that requires a knowledge of many solid-state principles. Those interested in thermal conduction per se would find J. E. Parrott and Audrey D. Stuckes's Thermal Conductivity of Solids (Pion, London 1975) more relevant, since it covers more materials, particularly semiconductors and magnetic materials. Even though these books have much in common, a serious student of the field could read them both with profit. Berman's book will be of special value for his skillful exposition of the basic physical principles.

PAUL G. KLEMENS Department of Physics University of Connecticut Storrs

Introduction to the Renormalization Group and to Critical Phenomena

P. Pfeuty, G. Toulouse 190 pp. Wiley-Interscience, New York, 1977. \$19.95

During the last seven years renormalization-group theory has made a strong impact on the thinking and methodology of theoretical physics. The area of most extensive applications of renormalization-group ideas is that of critical phenomena. This field witnessed quite an outburst of research activity, with many workers making original and innovative contributions.

Pierre Pfeuty and Gérard Toulouse, professors of physics at the Université de Paris Sud, Centre d'Orsay, have both done significant work in the field. Pfeuty's main contributions concern studies of quadratic anisotropy and mapping of classical models to quantum ones at lower dimensionality. Toulouse studied the

analytical continuation of the order-parameter dimensionality to the value n = -2 and considered the systematic variation of exponents in the (n, d) plane.

Although the field has produced a number of review articles, so far only a relatively small number of books has been published. Therefore one can only welcome the appearance of "a truly introductory book ... as thin as possible" containing a "clear outline of the simplest ideas."

The book is thin indeed. Its brevity, together with the clear and concise style, make for enjoyable reading. It covers a

wide range of topics and applications, including discussions of the dimensionality n of the order parameter and its relation to the excluded-volume problem, percolation and the spherical model, derivation and discussion of the Ginzburg criterion, and the characteristic dimensionality (above which exponents become classical) for various models. A brief and clear presentation of covariance under dilatations and its relation to scaling and homogeneity is followed by introduction of the renormalization-group ideas, with a strong emphasis on the topology of renormalization group trajectories, and a

Fast, on-the-spot FFT analysis of spectra from 0.25 Hz to 20kHz,

The first truly portable, complete FFT Spectrum Analyzer—our new SD340—is a "smart" instrument that does a lot of your work for you. It's microprocessorbased, but you don't have to be a computer expert to use it effectively in designing, testing and trouble-shooting. You can read out broadband and narrowband (analyzed) levels in engineering units-volts, dBV, dBM, Hz. The flick of one toggle expands any spectrum area five times to full CRT width for detailed study. Use it to study filter shapes isolate harmonic terms...measure distortion levels...check channel-tochannel crosstalk and noise pickup.

The SD340 is equally at home with the R&D engineer and with the technician in production checkout or troubleshooting. Its simplicity, its versatility—plus being the lowest priced FFT Spectrum Analyzer on the market—makes the spectrum analyzer as practical and indispensable a measuring tool as the universally used oscilloscope.

Check these hard facts...

- √ 400-line resolution
- √ 0.25 Hz to 20 kHz analysis
- √ 0-100 Hz to 0-20 kHz analysis ranges
- √ 60 dB dynamic range
- √ FFT operation; all-digital stability
- √ Micro-processor based
- √ Built-in averaging
- √ Completely portable: only 30 lbs. with carrying case

Send for complete information and specifications.

Circle No. 28 on Reader Service Card