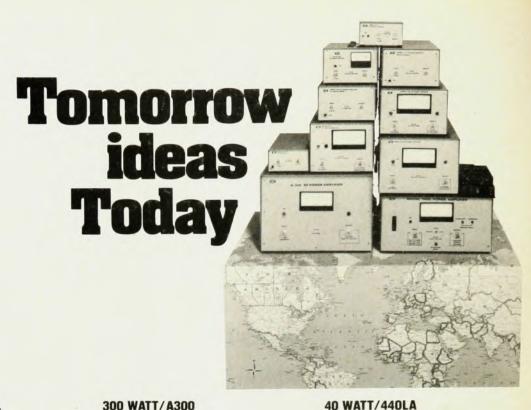
letters

Influence of research on corporate success

Most technically oriented people believe that research activities within a corporation strengthen its performance by leading to new products and by providing leadership to its intellectual life. However, objective evidence of this influence is not readily available. Certainly, no simple "cause and effect" relationships have been found. Indeed, there is no basis for expecting them to exist, because corporate performance depends on several factors in addition to research, so relationships that might actually exist tend to become obscured from view. Also, research generates embryonic activities that take several years to mature. During the long maturation period, the relationships between the original research and the ensuing products become diffused.

In spite of the difficulties cited above, the influence of research can be demonstrated by means of statistical observations. Convenient data are provided by the accompanying list of the 50 manufacturing corporations that did the most spending for research during 1976. This list was first published by *Inside R&D*, Vol. 6, Number 22 (1977). The stock price/earnings ratios (P/E) for these 50 companies are shown along with their research spending/sales ratios (R/S), and their income/sales ratios (I/S).

Biggest R&D spenders in US industry-1976


Rank		R&D Expend.	R&D/Sales	P/E	Net 1976 Income/Sales
1976	Company	(Millions \$)	(%)	1/4/77	(%)
170		4057.0	0.7	0.7	0.0
1	General Motors	1257.3	2.7	6.7	6.2
2	IBM	1012.0	6.2	17.4	14.7
3	Ford Motor	924.9	3.2	5.3	3.4
4	AT&T/Bell System	643.0	1.9	10.1	11.7
5	General Electric	411.5	2.6	12.0	5.9
6	DuPont	352.5	4.2	13.6	5.5
7	United Technologies	358.4	6.9	6.9	3.0
8	Eastman Kodak	335.5	6.2	17.1	12.0
9	Chrysler	280.0	1.8	3.4	2.1
10	ITT	246.0	2.1	8.1	4.1
11	Xerox	225.7	5.1	10.7	8.1
12	Exxon	202.0	0.4	8.6	5.4
13	Boeing	191.0	4.9	9.0	2.6
14	Caterpillar Tractor	187.9	3.7	12.4	7.6
15	Dow Chemical	187.5	3.3	11.5	10.8
16	Sperry Rand	168.3	5.1	7.9	4.8
17	3M	157.5	4.5	17.2	9.6
18	Union Carbide	142.4	2.2	8.0	6.9
19	Westinghouse	141.0	2.3	7.3	3.6
20	International Harvester	140.0	2.6	5.6	3.2
21	Procter & Gamble	136.6	2.1	16.2	6.2
22	Merck	136.3	8.2	16.6	15.3
23	Honeywell	125.6	5.0	9.4	4.2
24	Goodyear	113.6	1.9	11.8	2.1
25	Eli Lilly	113.1	8.4	14.9	14.9
26	Johnson & Johnson	112.5	4.4	19.2	8.1
27	RCA	111.9	2.1	12.5	3.3
28	Monsanto	111.2	2.6	7.5	8.6
29	Deere	108.4	3.4	7.6	7.7
30	Burroughs	107.9	5.8	13.3	9.9
31	Hewlett-Packard	107.6	9.6	23.0	8.1
32	Gen. Tel & Electronics	105.64	1.6	9.0	6.7
33	McDonnell Douglas	105.60	3.0	7.2	3.0
34	Motorola	101.5	6.7	15.0	5.7
35	Bendix	100.5	3.4	8.8	3.6
36	NCR	94.2	4.1	10.5	3.9
37	Shell Oil	93.0	1.0	6.9	7.6
38	Upjohn	92.6	9.0	13.3	7.5
39	Pfizer	88.1	4.7	12.3	8.4
40	Signal Companies	83.7	3.4	8.2	2.6
41	American Cyanamid	83.3	4.0	9.2	6.5
42	Warner-Lambert	78.9	3.3	13.1	6.8
43	Polaroid	77.6	8.1	14.2	8.3
44	Standard Oil of Calif.	76.1	0.4	7.7	4.5
45	Mobil Oil	75.0	0.3	7.5	3.6
46	Texas Instruments	72.2	4.3	20.1	5.9
47	Celanese	70.0	3.3	10.4	3.3
48	Bristol-Myers	69.0	3.5	12.7	7.9
49	Standard Oil of Ind.	67.1	0.6	8.6	7.7
50	Gulf Oil	64.0	3.3	6.8	8.6

GUEST COMMENT

by J. J. Gilman R. H. Miller

The relationship between income and research effort is displayed in figure 1, where I/S is plotted versus R/S for the 50 corporations listed in the table. These corporations make a wide variety of industrial products, and the data of figure 1 scatter considerably as might be expected. Several factors other than research play a role in determining corporate income; and research done in 1977 cannot be expected to have much effect on 1977's income. Nevertheless, the regression line (least squares fit to the data) shows a definite tendency for income to increase with research spending, and the correlation coefficient of 0.45 shows that a statistical connection exists between the two quantities. The slope of the regression line indicates that a one percent increase in relative research spending is related to a 0.65 increase in relative income.

The top 10% of the corporations in relative income (IBM, AT&T, Kodak, Merck, Lilly) all have strong research programs. The bottom 10% (UT, Chrysler, Boeing, Goodyear, McDonnell Douglas, Signal) have modest programs. The 10% with the largest relative research expenditures (Merck, Lilly, Hewlett-

1.4 KILOWATT/1140L • 9 kHz to 250 kHz

- · All Solid State
- Weighs less than 20.25 kg

A revolutionary development in high power solid state amplifiers, the 1140L is designed for high power RF heating, ultrasonics and laboratory applications. Optional matching transformers will deliver full power to any load impedance from 3 ohms to 800 ohms balanced or unbalanced.

150 WATT/240L

- 20 kHz to 10 MHz Coverage
 Up to 150 Watts Output
- 40 Watts Linear Class A Power

Extraordinary performance in a wide range of transducer drive applications. Delivers up to 150 watts into any load regardless of its impedance. Compatible with all signal and function generators, the 240L is a high quality laboratory instrument for ultrasonics, biological research and electro-optic modulation.

100 WATT/3100L

- 250 kHz to 105 MHz
- Up to 180 Watts Pulse
- Driven by any Signal Generator

Designed to replace bulkier tube amplifiers, the model 3100L provides reliable and maintenance-free operation for NMR, ultrasonics and communications applications.

300 WATT/A300

- 300 kHz to 35 MHz
- Up to 500 Watts Pulse and CW
- 55 dB ± 1 dB Gain

Highest power in a portable package. Top quality signal transmission in AM, SSB and pulse communication systems. Cannot be damaged by mistuned antenna.

3 WATT/400AP

- 150 kHz to 300 MHz
- 100 kHz to 320 MHz Usable Coverage
- · For use in Hostile Environments

operational environments and in OEM applications. All-welded aluminum enclosure provides rugged protective housing. External DC power is fed through integral RFI/EMI filter.

10 WATT/411LA

- Flat 150 kHz to 300 MHz
- 10 Watts Linear Output
- No Bandswitching

An ultra-linear Class A design, the ENI 411LA will "boost" the output of any signal source by a flat 40 dB and provide its full forward output power into any load impedance. High quality laboratory unit for TV signal distribution and high power sweeper output.

Flat 1.7 to 500 MHz Primarily intended for use in hostile

1.3 to 515 MHz Usable Coverage

The widest band solid-state power

amplifier available at its 40 watt power level, the ENI 440LA is truly a state-of-

the-art instrument. As a drive source for

lators and deflectors, the model 440LA

high resolution acousto-optic modu-

9.5 Watts Linear Output

is invaluable.

10 WATT/510L

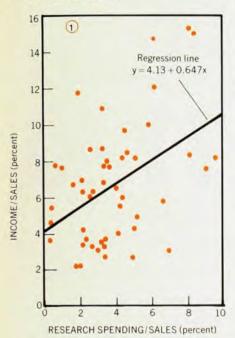
• 150 kHz to 300 MHz

 40 Watts Class A Linear · State-of-the-Art

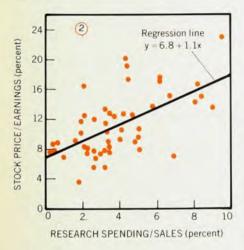
An ultra-linear Class A design, the 510L provides faithful reproduction of the input waveform for AM, FM, SSB, CATV, pulse and other complex modulations. The use of microwave transistors on thin film substrates, microstrip circuitry, and plug-in modules make this unit reliable and easy to service.

0.15 WATT/600L

- 0.8 to 1020 MHz
- 150 Milliwatts of Linear Power
- Flat 24 dB Gain
- Up to 300 Milliwatts Saturated 150 milliwatts of power 0.8 to 1020 MHz when driven by any laboratory signal generator. Exceptional as a general purpose laboratory instrument and for wideband pulse systems.


World's Leader in Power Amplifiers

If you would like to receive the new catalog of our full line of amplifiers and multicouplers, write: ENI, 3000 Winton Rd. So., Rochester, New York 14623. Call 716-473-6900. TELEX 97-8283 ENI ROC.


Booth #34 APS Show

letters

Packard, Upjohn, Polaroid) have reputations as innovators, so their expenditures have indeed influenced their situations. The 10% with the smallest relative expenditures (Exxon, Shell, Standard of California, Mobil, Standard of Indiana) are uniformly the oil companies and have corresponding reputations as non-innovators. Thus, the data appear to have internal consistency.

The square of the correlation coefficient is a measure of the effect of research spending on the variations in income among the companies of the data set. In this case, the value 0.20 indicates that 20% of the variations can be attributed to research (or lack thereof) while other factors cause the remaining variations. These other factors are such things as: marketing, financial strength, manufacturing efficiency, overhead accounts, and so on.

As mentioned above, there is no good reason to expect a strong correlation between research spending and income because one relates to the present while the

other relates to the future. A periormance measure that has more futurerelated content is the price/earnings ratio. It reflects the opinions of analysts (both amateur and professional) regarding the future prospects of corporations. The P/E ratio is determined by other factors as well, but the stature of a corporation's research program is one important factor. This is confirmed by the correlation plot of figure 2, which displays the P/E ratios of the 50 corporations of figure 1 plotted as a function of their relative research expenditures. The correlation is improved in comparison with figure 1. This may be seen by visual inspection and by the increase in the correlation coefficient from 0.45 to 0.59 (a 31% increase).

In figure 2, the regression line indicates that a one percent increase in relative research spending is connected with a 1.1 point increase in the P/E ratio. Also, $r^2 = 0.35$, which may be interpreted to mean that 35% of the variations in P/E ratios among the various corporations is determined by the strengths of their research programs. This is a strong influence indeed!

J. J. GILMAN R. H. MILLER Allied Chemical Corporation 8/26/77 Morristown, N.J.

Longest airlift

The recent airlift of a superconducting magnet to Moscow from Chicago (September, page 20) was notable from a standpoint other than that of international scientific cooperation. The flight of a Lockheed C-5 of the United States Air Force included 45 tons of related equipment. Lockheed claims that the 5900-mile flight, which included two refuelings, was the longest in aviation history with a payload that heavy.

MICHAEL D. LUBIN

McClellan Air Force Base

10/3/77 North Highlands, California

Oil reserves

In a letter on commodity reserves (October, page 82) Richard Vook points out reassuringly that the known reserves of many minerals (he did not list fossil fuels) have increased dramatically in the years 1950–70 and he says that predicting the life expectancy of any commodity "is probably very difficult, to say the least. Perhaps it isn't even worth the effort."

I feel that it is worth the effort to bring to our students, our teachers and our national leaders an understanding of the easily calculated results of exponential growth in the rate of consumption of a finite resource. The most dramatic example I know follows from the assertion that it is possible to calculate, with considerable accuracy, an absolute upper

The versatile new BNC precision digital time delay generator offers you all of this capability in one low cost instrument:

- Four functions and a full timing range from 0.1 microsecond to 100 seconds. Time delay, gate-width, period and events dividing. All digitally variable.
- Selectable time resolution in 5 steps from 0.1 microsecond to 1 millisecond increments.
- Period intervals for frequencies of 0.1 Hz to 10 MHz. Events division (nth pulse) from 1 to 100,000.

A 10 MHz crystal provides accurate clock pulses for the time base and for external synch. Main output pulses have less than 10 ns rise time, less than 1 ns jitter, and are amplitude variable between 2 and 12 volts.

The Model 7010 satisfies a host of timing, triggering, duration and sequencing in the fields of electronics, physics, chemistry, biomedicine, acoustics—to name a few. Remote programming is optionally available. Price: \$720.

For information, phone (415) 527-1121 or write:

Berkeley Nucleonics Corp. 1198 Tenth St. Berkeley, Ca. 94710