we hear that

of the Institute, Keith B. Mather, was appointed the vice-chancellor for Research and Advanced Study at the University of Alaska.

Sidney Ross was named staff technical adviser at RCA's Government Systems Division. Ross, who is responsible for independent research and development within the Division, was formerly the technical director of Frankford Arsenal.

The communications Group of Oak Industries Inc. appointed H. K. Sauer to become president of its CATV Division. Sauer comes from Harris Satellite Communications Company where he was vice-president.

Homer A. Neal, previously on the physics faculty at Indiana University, was appointed dean of resources and graduate development at the same institution.

Richard Ahrenkiel, formerly with the Eastman Kodak Research Laboratory in Rochester, N.Y., has joined the staff of the Los Alamos Scientific Laboratory. Ahrenkiel will be working in the Laser Research and Technology Division.

T. Eugene Smith has joined Pertec Com-

puter Corporation as the vice-president and general manager of its Microsystems Division. Smith was formerly the president of Loftis Engineering Corporation.

Carl J. Campagnuolo received the Department of the Army Meritorious Service Award, the second-highest civilian honor given by the Army. The Award cites his outstanding technical achievements during a 16-year tenure as a research physicist at the Harry Diamond Laboratory in Adelphi, Maryland. Also receiving an award was Norman J. Berg, a research physicist at the Laboratory. Berg received the Hinman Award, presented for innovative research in the area of signal processing.

Paul H. Frampton, formerly an associate research physicist at the University of California, Los Angeles, is now working with the high-energy theory group at Ohio State University. He assumes the title of adjunct associate professor and senior research associate.

John R. Pierce, professor of engineering at the California Institute of Technology, received the Founder's Medal of the National Academy of Engineering. Pierce, a Fellow of the Acoustical Society of America, was cited for his contributions to the art of electronic communication.

Counting lons or Photons?

PARC offers a wide selection of instruments to let you amplify, discriminate, count, and synchronously detect low level signals better than ever before.

Model 1109 Photon Counter

- 100 MHz count rate capability (with Model 1121 Amplifier-Discriminator)
- · Computer interfacing
- Automatic background subtraction

Model 1121 Amplifier-

Discriminator

- Dual discriminator (50 μV-210 mV levels)
- Built-in high voltage supply option
- Remote amplifier-discriminator
- Built-in pulse height spectrum analyzer
- Single level, Window & Correction modes

Model 1112 Photon Counter/ Processor

100 MHz counting speed

- Wide-range source compensation
- 6 operational modes
- Synchronous sampling & "Real Time" background subtraction

Model 1140 Quantum Photometer

- Low cost
- Linear coverage over nine decades of intensity
- Normalized electrometer range for high level signals

Write or call today for your copy of our Photon Counting Catalog. Princeton Applied Research Corporation, P. O. Box 2565, Princeton, New Jersey 08540; phone: 609/452-2111.

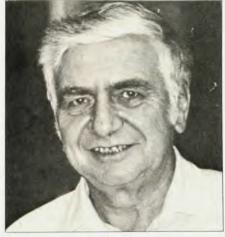
PRINCETON APPLIED RESEARCH

See PARC at the APS Show

Washington, D.C. Booths #29, 30, 31

For Additional Information Circle No. 65

For Salesman to Call Circle No. 66


obituaries

Alfred E. Schild

Alfred E. Schild, one of the world's leading research workers in the theory of gravitation and Ashbel Smith Professor of Physics at the University of Texas at Austin, died on 24 May. He was 56 years old.

Schild clarified and enlarged general relativity through his studies of singleparticle motion, quantization, special solutions and the conformal structure of space-time. His beautiful papers exhibiting the null structure of the world combined geometrical vision with analytical power. Much of his work on action principles and particles will be found inspiring by many physicists when read and understood. His style was direct and elegant. As far as I know, Schild never published a wrong formula. His expositions of tensor analysis and relativity are still among the best and clearest treatments of these subjects.

Schild, an Austrian Jew, was born in Turkey. In 1939 he fled Nazi Austria, was interned in England and sent to Canada. He studied at the University of Toronto with John L. Synge and Leopold Infeld. In 1957 he came to the University of Texas at Austin. He created a center for relativity there and was instrumental

SCHILD

in establishing centers for statistical mechanics and particle physics. His charm, warmth, vision and honesty recruited people from far away for the University of Texas, whose physics department now enjoys international distinction.

He liked people; he was a humanist and fought for the rights of the individual with zest and compassion. Titles such as "chairman of the board of regents" or "President of the United States" did not impress him. His proposals for university reform were original; for example:

From Laser Analytics...


THE NEW SPECTROSCOPY

Put the new tunable diode laser to work in your lab with the new Laser Analytics LS-3 Laser Source Spectrometer. Realize resolution limited only by the laser's spectral line-width of less than 0.0001 cm-1. Scan spectra at wavenumber/millisecond rates. Tune hundreds of wavenumbers with an individual laser source and access the entire infrared spectrum from 330 to 3700 cm-1 with interchangeable diode lasers. Tunable diode lasers, exclusively produced at Laser Analytics, are coupled to a stabilized cryogenic refrigerator, an efficient monochromator and dedicated electronic and optical pro-

cessing components to produce the LS-3. The LS-3 enjoys orders of magnitude greater resolving power than conventional infrared spectrometers. Note the one-wavenumber scan near 3.57 microns, showing completely resolved 0.006 cm-1 wide absorption lines in low pressure formaldehyde gas. With this resolving power, entirely new research topics are open to Laser Source Spectrometer users. The LS-3 is now being used in molecular spectroscopy, pollution monitoring, molecular beam analysis, combustion process studies, laser isotope separation and heterodyne radiometry.

Circle No. 53 on Reader Service Card

Booth #72 APS Show Circle No. 46 on Reader Service Card

obituaries

"Every newborn child should receive, with his birth certificate, a second document granting him a PhD..." He was a writer and lover of the arts with a tremendous joie de vivre and was completely unstuffy. When a Daily Texan interviewer asked him how he conducted his research, he answered, "I sit at my desk and think of girls, and sometimes I get a good idea."

Physicists all over the world have lost more than a distinguished colleague. One of the kindest, most amiable persons is dead. He was the most decent man I ever knew.

> E. L. SCHUCKING New York University

Arthur Cobb Hardy

Arthur Cobb Hardy, ScD, emeritus professor in the department of physics at MIT, died in his sleep at his home in Wellesley, Massachusetts on 31 October at the age of 81.

Hardy was born in Massachusetts and educated at the University of California. Upon completion of his master's degree in 1917 he enlisted in the Photographic Branch of the US Army Signal Corps, transferred to the Air Service and served in France as the commanding officer of the 23rd Photographic Section. Thereafter, he was an instructor at MIT until 1920, when he was employed as a physicist at the Research Laboratories of the Eastman Kodak Company. At Kodak he specialized in optics and became the 172nd member of the newly formed Optical Society of America. In 1922 Hardy returned to MIT as an assistant professor and became, in 1933, professor of optics and photography.

Throughout his long teaching career. Professor Hardy profoundly influenced the careers of many students who are today well-known applied scientists and engineers. They remember with gratitude his ability to connect fundamental knowledge with the technical needs of industry. His famous text, The Principles of Optics (McGraw-Hill 1932), is still unique and useful. A later work, the Handbook of Colorimetry (Technology Press 1936), together with his invention of the first automatic recording spectrophotometer led to industrial color measurement as now practiced world-wide. His research on color reproduction in the printing industry pioneered advancements in that field.

In World War II Hardy was the chief of a section of the National Defense Research Committee in President Roosevelt's wartime Office for Emergency Management. That section was concerned with what military personnel can see under every kind of operational circumstance and with means for restricting enemy visual capability. Technical