
Electrical conduction in metals
The modern theory was created fifty years ago

by Felix Bloch; it still provides the basis for understanding
conduction, but many challenges remain.

Philip B. Allen and William H. Butler

Fifty years ago in the Zeitschrift fiir
Physik, two papers were published which
laid the foundations for the modern
quantum theory of solids. Arnold Som-
merfeld1 quantized the theory of the
electron gas, and Felix Bloch2 showed how
this could be generalized to a realistic
theory for electrons in solids. In a de-
lightful article in PHYSICS TODAY (De-
cember 1976 page 23) Bloch has re-
counted the circumstances in which he
came to work on the electron theory of
metals in Leipzig as Heisenberg's first
graduate student.

Bloch's thesis is one of several papers
that appeared after 1926 and opened up
a whole new field by applying the quan-
tum theory to an old problem. In Bloch's
words "almost any problem that had been
tossed around years before could now be
reopened and made amenable to a con-
sistent treatment." As we read Bloch's
paper today, it is apparent that he is very
modest. In this article we will attempt to
describe how even fifty years later, the
process of understanding and imple-
menting Bloch's ideas on electron trans-
port is far from over.

Early theories

Modern theory of electrical conduction
in metals began with Paul Drude's paper3

of 1900 which treats the process in terms
of a recently discovered particle, the
electron. The theory rested on an as-
sumption that under scrutiny seems at
first absurdly oversimplified, namely that
one should treat conduction electrons as
a gas of weakly interacting particles.
However, it is precisely this curious fea-
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ture of Drude's model that remains at the
heart of the modern theory as well; the
great successes of both theories suggest
that it does have an element of truth.
The shininess and high conductivity of
metals follow clearly from the hypothesis,
unifying their ac and dc properties. The
theory could have predicted the trans-
parency of metals in the ultraviolet, a
phenomenon that was not discovered
experimentally until 1933.

By applying methods from the kinetic
theory of gases, Drude was able to give a
quantitative derivation of the Wiede-
mann-Franz law, that the ratio of thermal
to electrical conductivities is a universal
number, the Lorenz number, times the
absolute temperature. If both electrical
and thermal currents are carried by elec-
trons, the same mean free path and mean
speed enters both formulas. Specifically,
the thermal conductivity is

K = -kBnlv

and the electrical conductivity,

• nlu
6kBT

(n is the density of particles, u their speed,
and I their mean free path). The Lorenz
number is thus 3(k&/e)2 which is in rea-
sonable agreement with experiment. The
chief source of error was, in fact, in the
measured values kB and e. Accurate
values of these constants were not avail-
able until Max Planck's paper of October
1900, in which he deduced kB and e from
the data on blackbody radiation.

But all was not well. The theory was
"refined" by H. A. Lorentz4 who intro-
duced Boltzmann's equation from rare-
fied gas theory. Among other minor
corrections, he found the theoretical Lo-
renz number to be reduced by a factor 2/3
from Drude's value, weakening the

agreement with experiment. The full
degree of disagreement between classical
theory and experiment was most clearly
described by Niels Bohr in his doctoral
dissertation, which has been called5

"perhaps the most deflationary publica-
tion of all time in physics." The dif-
ficulties of Drude's theory are well
known:
• prediction of an electronic heat capacity
C = 3NkB/2, which is not observed,
• failure to explain magnetic properties,
and
• failure to explain the temperature de-
pendence of the conductivity.

Quantum theories

The first problem was cured by Som-
merfeld1 who found that because of the
Pauli principle, only a small fraction of
the electrons (specifically, kBT/Ey where
the Fermi energy, Ep, is about 10 eV) can
be thermally excited and contribute to the
heat capacity. Wolfgang Pauli and
Werner Heisenberg showed that quantum
theory is the key5 to the second problem,
although the puzzles are by no means
completely solved even today. Many of
the concepts necessary for the solution of
the third problem were given in Som-
merfeld's 1928 paper. Treating the
electrons as a quantum instead of a clas-
sical gas brings in a new velocity, the
Fermi velocity, which is temperature-
independent. The observed T-depen-
dence of resistivity can then be assigned
to the electron scattering rate.

The value of the Lorenz number from
Sommerfeld's theory is larger than
Drude's value by a factor of (?r/3)2, and is
in excellent agreement with experiment.
However, Sommerfeld's theory provided
no more justification than Drude's for
treating electrons as a gas. It remained
for Bloch to provide a satisfactory fun-
damental theory.
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Bloch's 1928 paper is best known for
"Bloch's theorem" which states that in a
periodic medium such as a crystal, the
electron eigenstates can be chosen as
plane waves modulated by a function with
the periodicity of the medium. However,
this theorem is but a small part of the
work. It had, in fact, been found a few
months earlier by E. E. Wittmer and Leon
Rosenfeld,6 as Bloch acknowledges in his
thesis, and can also be thought of as a di-
rect result of Floquet's theorem (pub-
lished in 1883)—Bloch, however, used the
recently introduced group-theoretic
methods to deduce the theorem.

From the theorem, Bloch proved that
the eigenstates he had found carry a
non-vanishing current, and thus have a
complete analogy to the corresponding
plane-wave eigenstates of the quantum
free electron gas. This eliminated one
important objection to Drude's "absurd"
rarefied gas hypothesis by showing how
the electrons could travel through the
lattice without scattering off the ions, but
it did not explain how they could avoid
interacting strongly with each other.

The greatest accomplishment of

FELIX BLOCH 1952

Bloch's paper seems to us to be his anal-
ysis of how metallic electrons respond to
an externally imposed electric field, and
how they scatter from the lattice defects
and vibrations. The difficulty of this
problem has been summarized by William
Visscher.7 "The obstacle with which any
attempt to calculate a is soon confronted
is that in the absence of random scatterers
it is infinite. If perturbation theory is to
be used, it must be used with care, be-
cause every term in the expansion in
powers of the scattering strength is either
zero or infinity." Bloch's solution to this
problem required an intuitive leap, which
was verified by pertubation theorists
thirty years later. First he noticed that
a wave-packet built of "Bloch states"
centered at wave-vector k drifted in k-
space under the influence of the electric
field. The drift rate is now called the
"semiclassical acceleration;" its value is
dk/dt = -eE/h, and it is a quantum an-
alogue of the classical force law used in the
earlier classical gas theories of conduction.
He then argued that the wave-packet drift
implied that in a metal the occupation
probability F(k) of the Bloch states (the

quantum analogue of the classical distri-
bution function) would evolve in time
according to dF/dt = -eE/h-dF/dk.
Next he discussed the interaction of
electrons with lattice vibrations and de-
rived the form of the relevant matrix ele-
ments. Time-dependent perturbation
theory showed that the interaction gives
rise to energy and wave-vector conserving
inelastic transitions between different
electron states by emission or absorption
of lattice quanta, or phonons. Finally,
mentioning great computational dif-
ficulties ("grosse rechnerische Schwier-
igkeiten") he abandoned rigor and pre-
sented a reasonable model for the matrix
elements and made a statistical discussion
of the change in occupation probability
due to electron scattering events. This
discussion is closely parallel to the clas-
sical method of Boltzmann and Lorentz.
However, Bloch inserted new factors of
the type 1 - F(k') to ensure that no scat-
tering could occur into the state k' (ac-
cording to the Pauli principle) if the state
were already occupied. The legitimacy
of using the statistical probability F(k')
at this point is by no means obvious from
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Schrodinger's equation. However, Bloch
was able to derive a remarkable conse-
quence which must have increased his
confidence considerably. He proved that
if the lattice vibration obeyed Einstein's
statistics in thermal equilibrium, then the
only electron occupation function which
would remain stationary under the mu-
tual scattering between two states k and
k' of energies «k>«k' was the newly discov-
ered Fermi-Dirac equilibrium distribu-
tion function

Bloch then had an equation showing how
a steady state current obeying Ohm's law
would be reached owing to competition
between the electric field pulling the oc-
cupancy function in k-space and the col-
lisions with phonons driving it back
towards the Fermi-Dirac equilibrium
value. This Bloch-Boltzmann equation
(or "semiclassical" Boltzmann equation)
remains the central result in the theory of
transport in metals and semiconductors.
Solving this equation did not prove trivial.
Deriving the result that p increases lin-
early with T at high temperature was
relatively easy, but the correct low tem-
perature solution, p a T5, eluded Bloch
until8 1930 (see the box below).

Modern results

Where do we stand today in our ability
to understand and apply Bloch's theory?
Let us postpone a discussion of the deeper
microscopic justification of Bloch's
theory, and examine first how well the
theory works for phenomena in real and
well-behaved metals. Figure 1 shows the
measured resistivity of nearly pure pal-
ladium, an element that has attracted
much interest for many years. The Bloch
theory as extended by Eduard Griineisen9

in 1933 fits nicely the overall shape of the
data. However, a more detailed exami-
nation of the low temperature region by
Griineisen showed larger discrepancies

than had been seen in most other ele-
ments up to that time. The source of
these discrepancies, whether they arose
from details of the structure of palladium
or from fundamental defects of the theo-
ry, was not clear.

Much more is now known about Pd
than was known fifty years ago. The
shape of the Fermi surface has been
measured by such experiments as de
Haas-van Alphen oscillations. Neutron
scattering has determined the phonon
frequency spectrum. Computational
band-theorists have learned how to com-
pute electron energy levels and find good
agreement with Fermi-surface measure-
ments. Thus the ingredients are avail-
able for turning Bloch's equations into a
quantitative and predictive theory.
However, this program is complicated by
two factors. One is purely technical: no
simplifying features such as spherical
Fermi surface or Debye-like phonon
spectrum are consistent with our current
knowledge. The algebra of solving
Bloch's Boltzmann theory is thus a tedi-
ous, but soluble, problem. The second
difficulty is that a realistic self-consistent
treatment of electron-phonon matrix el-
ements is still not available. Currently
theorists are mostly avoiding this problem
by making judicious guesses whose con-
sequences can then be compared with
experiment.

In collaboration with Frank Pinski, we
have recently11 calculated p(T) for pal-
ladium. The results are shown in figure
1 (colored curve). The calculation can be
put into close analogy with Bloch's origi-
nal work by defining as an intermediate
step an effective, weighted density of
phonon states for transport processes. In
the Bloch-Griineisen theory, that func-
tion is simply porportional to ft4 (Q is the
phonon frequency). The two functions
are compared in figure 2. The theory is
shown in somewhat more detail in the box
on the opposite page (below, right).

EDUARD GRUNEISEN 1937
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Bloch-Griineisen theory
Bloch's semiclassical Boltzmann equations can be solved exactly when the Fermi surface
is spherical and the scattering is elastic, but the principal scattering in pure metals is by
creation and absorption of lattice vibrations. Bloch solved this only in the limits of high2

and low8 temperatures and proved that the behavior in between was more difficult to solve.
Griineisen9 was undismayed and propsoed that since Bloch's low-temperature formula, blindly
extrapolated, matched his high-temperature formula, it should be used for all values of T.
The resulting "Bloch-Griineisen formula" is

p( T) = 4p' f "dx x3 CE(X) (D

where p' is dp/dTat high T, dD is the Debye temperature, and CE(x) = [x/2sinh(x/2)]2, is
the Einstein function for the specific heat (in units of kB) of a one dimensional oscillator of
frequency w. The dimensionless parameter x is hw/kB T. At high T, equation 1 becomes
p = p'T, and at low T, p = 497.7 p'Ti( 7*/0D)4. (Gruneisen had earlier noted empirically the
close similarity in temperature dependence between p(7) and TQT) where C is the total
specific heat, and on this basis had proposed, incorrectly, that the low-temperature behavior
of p should be as T4.) Equation 1 is now known to be nearly as accurate a solution as Gru-
neisen could have hoped. However, the underlying model of spherical Fermi surface, Debye
phonons (longitudinal branch only), and bears little resemblance to reality for most met-
als.



As is clear from figure 1, the current
microscopic theory fits the data somewhat
less well than the older approximate
model of Bloch and Griineisen. However,
it is impressive that the microscopic cal-
culation, with no adjustable parameters,
gives an excellent account of the absolute
magnitude and overall T-dependence of
p{T). This puts us in a much better po-
sition than before to assess the signifi-
cance of the remaining discrepancies.
Discrepancies between theory and ex-
periment are easiest to detect at low or
high temperatures, because in these
ranges theory predicts simpler behav-
ior.

Low temperatures

At low temperatures, Bloch's theory
predicts a simple T5 behavior for the
electrical resistivity in pure metals due to
inelastic scattering by phonons. There
are, of course, other processes that con-
tribute to the resistivity, such as the
scattering of electrons due to their Cou-
lomb interaction, and scattering by im-
purities. An empirical rule, formulated
by Augustus Matthiessen in the 1860's,
states that the contributions to the resis-
tivity of an impure metal are simply ad-
ditive, consisting of the pure metal resis-
tivity plus a temperature independent
"residual resistivity" due to impurities.
If this rule were obeyed, the experimental
determination of the low temperature
exponent n (p(T) = po + aTn) would be
considerably easier, although still difficult
since aTn is usually much smaller than po
in the temperature range of power law
behavior. However, experiments tend to
show strong deviations from this behav-
ior; the low-temperature limit is not such
a simple function of p0 and T and contains
cross terms. Many different exponents
n have been found with little clear regu-
larity, and it is fair to say that confusion
prevails.

Recent experiments12 thus leave us
with at least three questions:
• Is Bloch's limiting T5 behavior ever
observed?
• Does electron-electron Coulomb scat-
tering appear as a T2 contribution?
• What is the source of the systematic
deviations from Matthiessen's rule that
are seen at low temperatures?
Most researchers believe that these
questions can eventually be sorted out in
the context of Bloch's theory. The com-
plexity of the theory is such that it is not
yet clear what behavior is permitted when
there is more than one scattering mecha-
nism. Matthiessen's rule follows from
Bloch's theory in a first approximation,
but improved approximations allow de-
viations, which are difficult to calculate
exactly. Even in pure materials with only
phonon scattering permitted, the "rigor-
ous" T5 limit is obscured theoretically by
the observation that at low enough T, the
phonons can no longer be regarded as in
equilibrium, and more complicated
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Experimental and calculated resistivities of palladium. The Bloch-Griineisen theory (black curve)
fits the data so well that the difference would be hardly perceptible in this figure. There are sub-
stantial relative differences below 50 K, however. The colored curve shows the results of the
modern theory with no adjustable parameters. Figure 1

equations must be solved.
The direct scattering of electrons from

each other by Coulomb interactions plays
surprisingly little role in the resistivity.
This would be understandable in an iso-
tropic medium with a spherical electron-
energy dispersion, because momentum

conserving collisions would conserve
current. However, most metals are suf-
ficiently far from spherical symmetry that
current conservation is completely broken
down. It was observed by Lev Landau
and Isaak Pomeranchuk13 and W. G.
Baber14 that this should give rise to a T2

Modern theory
Current knowledge of phonon spectra and Fermi surface dimensions is limited mainly by
crystal growing arts and experimental diligence. A correspondingly improved theory of
resistivity is available, and we proposed that it should be called the "modernized Bloch-
Gruneisen formula."

(2)

(3)

(4)

P(T)= ^

= 2 f "m°X ̂  a
«/o it

where N(0) is the density of states (both spins) at the Fermi energy and (i/2) is the mean
square Fermi velocity. These parameters can be calculated if the band structure is known
and often differ greatly from the free-electron values. The behavior of the scattering rate
1/T is controlled by the dimensionless coupling constant Xtr(T), whose temperature de-
pendence is determined by the Einstein function CE(x). At high temperatures C^ = 1 and
Xtr(T) becomes a constant, \, r, whose value ranges between 0.1 and 2.0. The name \n
is meant to denote the transport (tr) analog of the dimensionless coupling constant X that
determines the superconducting transition temperature and whose value can be deduced
from 7"c. Similarly, a\F(Q.) is the analog of the function a2F(Q) from superconductivity theory,
which is the phonon density of states, F(9.), weighted with the electron-phonon interaction.
The difference between the transport quantities Xtr and a\F, and the analogous quantities
in superconductivity is a factor of the type (1 — cos0), which causes the behavior of a\F(Q)
to be as fl4 at low temperatures, rather than fi2 as seen in superconductivity. Just as
equation 1, the above do not represent an exact solution of the Bloch-Boltzmann equation
but an accurate variational estimate. Unlike equation 1, however, this version takes full
account of the complexities of the Fermi surface and phonon spectrum.
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contribution to p(T) which would domi-
nate over phonon scattering at both very
low and very high T. This effect has not
yet received joint experimental and the-
oretical verification. In transition metals
where the effect is expected to be large,
low temperature n = 2 exponents are
sometimes found. However, the expected
reappearance of a T2 term at high T is
usually missing.

High temperatures

At high temperatures, the Bloch-
Grvineisen theory predicts an increase in
resistivity proportional to T. Deviations
from that simple behavior are expected
for a variety of reasons. Lattice expan-
sion and normal anharmonicity will usu-
ally make p increase more rapidly than
linear, as does Coulomb scattering.
Mott-Fermi smearing (the k^T broad-
ening of the Fermi surface) can cause ei-
ther positive or negative deviations from
linearity. Recently it has been realized
that in many transition-metal com-
pounds, p versus T curves flatten out at
high T (negative deviation from linearity).
This seems to be almost a universal effect
among high Tc superconducting materi-
als. Some examples are shown in figure
3. Many explanations have been pro-
posed, some invoking processes that may
be accounted for in the context of Bloch's
theory. However, some theorists believe
that it represents a more fundamental
breakdown of the framework of the theory
itself. It can be argued, for example, that
most of the sources of deviation that can
be accounted for within that framework
allow both positive and negative devia-
tions; the "saturation" behavior shown in
figure 3 is, however, too consistently ob-
served to be such an accidental result.

120

The electron-gas model on which the
Bloch-Boltzmann theory is founded is
justified by the choice of Bloch states to
describe the equilibrium states of the
electrons. Perhaps at high temperatures
the disorder is so great that new equilib-
rium states are needed and the gas model
must be abandoned.

Microscopic theories

In the last 25 years, many microscopic
derivations have appeared of Bloch's
transport theory. One of the earliest and
easiest is by Walter Kohn and Joaquin
Luttinger.16 These derivations show that
Bloch's theory is valid only to lowest order
in (kpl)~l or where kp, I, T, EQ are
Fermi wavevector, mean free path, scat-
tering lifetime, and band width, respec-
tively. Experiments seem to indicate
that the theory is valid as long as the mean
free path is larger than roughly 10 or 20 A.
This result is more reassuring than an
earlier critique by Rudolf Peierls17 which
suggested that hhk^T was the expansion
parameter. A particularly careful deri-
vation by Theodore Holstein18 shows that
when the electron-phonon coupling is
strong, the mass-renormalization effects
which appear in specific heat vanish in dc
transport, leaving Bloch's theory intact.
Efforts to push beyond lowest order in
(kpl)~l have not so far been well re-
warded. Kohn and Luttinger discussed
corrections to order (kpl)~2, but it now
appears that this term may have an infi-
nite coefficient.

A fundamental problem which con-
fronts perturbation theory is the modern
idea of localization especially as worked
out by Philip Anderson.19 Any kind of
disorder (induced by impurities or ther-
mal fluctuations, for example) seems to be

200 400
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Experimental resistivities for representative A 15 metals: Nb3Sn white; Nb3Ge color; Nb3Sb gray;
and V3Si, black. All four of these except Nb3Sb have high superconducting transition temperatures.
The highest transition temperature is found for Nb3Ge(fc < 23 K), which so far has only been grown
in thin films with high residual resistivity. Figure 3
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Comparison of effective densities of state.
Curve a shows the dimensionless function
2Xtr(Q/fiD)4 that can be used in equation 4 to
reproduce the Bloch-Gruneisen formula. The
parameters X,r and QD have been adjusted to fit
the data of figure 1. Curve b shows the di-
mensionless, weighted phonon density of states
a\F(Q) that gives the theoretical curve for p( 7)
shown in figure 1. Figure 2

able at a critical strength to cause Bloch's
extended electron states to localize, a
process not described by normal pertur-
bation theory. Conduction in localized
states proceeds by "hopping" and lies
outside Bloch's theory. There are now
several well-documented cases of acti-
vated hopping in semiconductors and
other non-metallic systems.20 Between
the regimes of Bloch's metallic conduction
and hopping conduction sits the concept
due to Nevill Mott21 of the minimum
metallic conductance (or the maximum
metallic resistance.) It was Zachary Fisk
and George Webb22 who introduced the
word "saturation" to describe the be-
havior of figure 3. The idea (which as yet
has little detailed justification) is that this
is how the metal approaches the maxi-
mum resistance. Mott has pointed out
that simple dimensional arguments give
a resistivity p = hale2 for a crystal with
lattice constant a. This value is of the
same order of magnitude as the observed
limits seen, for example, in figure 3. The
simple phenomenological formula23

Up = l/po(T) + 1/Pmax

where po(T) is the resistivity given by the
Bloch theory, fits quite a lot of data. For
metals having the A 15 structure, the
value of pmax is about 150 micro-ohm cm,
and appears to be independent of tem-
perature and defect concentration. The
widespread occurrence of behavior of this
type seems to support Mott's concept and
to demand greater theoretical efforts to go
beyond Bloch's theory.

After 50 years of effort, many successes,
and much progress, we still don't fully
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understand either how to use Bloch's
theory to explain the low T anomalies, or
how to go beyond it to explain the high T
effects. For ordinary phenomena, how-
ever, the theory remains unchallenged in
its usefulness, and the 1928 paper stands
as a milestone in physics.
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