obituaries

The war years left Wentzel isolated in neutral Switzerland. Pauli had taken refuge in the United States and Wentzel held the fort until 1946 (when Pauli returned), teaching both at the University and at ETH. By now a Swiss citizen, he was more severe than many others in condemning the follies of Nazi Germany. Scientifically, his interests turned to meson theory. He developed the wellknown strong-coupling approximation, which predicted, in a special sense, the excited nucleon states (isobars). Several of his students (Jost, Felix Villars) worked on related problems.

In 1948, Wentzel made a US tour and visited the University of Chicago, then the "Mecca of Physics." He was offered an appointment and accepted. At fifty, he

WENTZEL

made the transition from "Herr Professor" to "Dr Wentzel" (or even plain "Gregor") prefectly and without visible effort. He spent the next twenty years happily at Chicago's Institute for Nuclear Studies (now Enrico Fermi Institute), a brilliant lecturer and always an active member of an intense research community. His own interests remained forever topical: QED (self-mass of the photon), superconductivity (the gauge problem), strange particles (introduction of the spurion), and others. His breadth, rare even among physicists of his generation, made him the focus of most seminars, and there were many. The range of his interests can perhaps be inferred from the contributions to a volume, Quanta (1970), presented to him by his friends on his retirement.

Wentzel was elected to numerous learned societies, including the National Academy of Sciences. A final recognition of his achievements was the award of the Max Planck Medal to him in 1976.

Wentzel's human qualities were special. He had the gift of being able to criticize without offending; thus, while an imposing figure, he could dispense encourage-

ment to his younger entourage. He was, always and under all circumstances, the perfect gentleman. On two continents, he leaves many friends and no enemies.

> V. L. TELEGDI Sherman Fairchild Scholar California Institute of Technology Pasadena, California

Reimar Pohlman

Reimar Pohlman, a pioneer in the field of ultrasonic techniques, died 2 April. After studying mathematics, physics and chemistry at Heidelberg and Berlin he received his doctorate in 1932. In 1934, as assistant to Walther Nernst, he began to investigate various applications of the new field of ultrasonics, particularly problems of ultrasonic imaging of objects. He became interested in many technical applications of ultrasonics, and he was the founder of the first industrial ultrasonics laboratory at Siemens in 1939. There he worked on material testing and underwater imaging.

In 1948 he joined the Technical University Zürich, where he continued his work in biological and medical applications. He also developed new methods for the ultrasonic cleaning, welding and shaping of solids. His long association with the Laboratory for Ultrasound at the Rhenish-Westphalian University at Aachen, Germany began in 1957 when he became professor and director of the laboratory. In his 20 years at Aachen he contributed greatly to his chosen field through hundreds of publications, as German editor of Ultrasonics, as a member of the International Electrotechnical Commission and as founder of the Ultrasonics Documentation Center at Aachen.

Hellmuth Etzold

Hellmuth Etzold, a professor in the department of electrical engineering at the University of Rhode Island, died on 15 March. Born in Leipzig, Germany in 1909, Etzold was educated in physics at the University of Leipzig and completed his doctoral work in physical chemistry at the University of Freiburg. He went on to become head of the German Forschungsgesellschaft für Funk und Tonfilmtechnik, and Privatdozent and chief engineer with the Department of Technical Acoustics at the Technical University of Berlin. In 1963 Etzold joined the faculty of the University of Rhode Island as a Special Lecturer and became an associate professor in 1965 and a professor in 1975. Etzold was active in many committees concerned with standards and standardization in audio and electroacoustics, and was a US delegate to several meetings of the International Electrotechnical Commission.

Your friendly Jarrell-Ash quide to quarter-meter monochromators.

Jarrell-Ash offers you a choice. Each a superb workhorse. Veteran on top has outstandingly high throughput capability (ideal for research). Newcomer below reduces stray light to lowest possible level (especially in IR); provides large exit-slit format for wide-element detector arrays. Here are the specs.

UV-vis

catalog no. 82-410

two gratings back-to-back; UV to IR at turn of a knob

focal length 250 nm

focal ratio

wavelength 175 nm-1.0 μm

dispersion

resolution 0.34 nm

stray light 0.3%

full range of accessories

vis-IR

catalog no. 82-487

choice of 10 quickly interchangeable gratings

focal length 275 nm

focal ratio 3.85 to 4.25

wavelength 175 nm-40 μm

dispersion

resolution 0.40 nm

stray light 0.05%

full range of accessories *with 25 µm x 18 mm slits, 1200 g/m grating.

Both instruments offer traditional Jarrell-Ash quality at remarkably modest prices. Send for literature.

Jarrell-Ash Division Fisher Scientific Company

590 Lincoln Street Waltham, Massachusetts 02154 (617) 890-4300

Circle No. 54 on Reader Service Card