
Metal-insulator transitions
Changes in temperature, pressure, magnetic field

or alloy composition can affect the electronic band structure of substances,
in some cases leading to dramatic changes in conductivity.

Sir Nevill Mott

Research on metal-insulator transitions
is at the moment quite fashionable. In
many materials the electrical behavior
changes from metallic to nonmetallic
when the pressure, temperature or mag-
netic field is varied or (as in alloys) when
the composition is varied, and the theo-
retical description of these processes is
quite complicated. The interest of the
problem lies perhaps mainly in our im-
perfect understanding of the nature of a
metal. In the days before quantum me-
chanics, when I first attended under-
graduate lectures on the electron theory
of solids, it was taught that in metals one
or more atoms from each electron were
free, whereas in nonmetals they were
somehow fixed to the atoms or ions or to
the chemical bonds. The long mean free
paths of electrons in metals extending
over hundreds or thousands of atomic
spacings were not understood, and neither
was the absence of any large contribution
from the electrons to the specific heat.

With the discovery of quantum me-
chanics and Fermi-Dirac statistics the
problem of the specific heat was almost
immediately cleared up. As for the mean
free path, it was shown that an electron
wave could propagate without scattering
in a perfect rigid lattice and the free path
was therefore a consequence of impurities,
defects or lattice vibrations. Then came
the theories of Felix Bloch, Rudolf Peierls
and Alan H. Wilson, which showed the
origin of the difference between insula-
tors, metals and semiconductors and have
so greatly influenced the development of
solid-state electronics. According to
these theories, particularly in the papers
of Wilson, the electrons in an insulator are
not "stuck" but are considered in a first
approximation as free. However, their
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energy states in a periodic lattice fall into
bands, and in an insulator the highest
occupied band (the valence band) is
completely full, so that (in the absence of
thermal or optical excitation) exactly as
many electrons are moving in one direc-
tion as in the opposite one. The valence
band is separated from the empty con-
duction band by a "gap," small in intrinsic
semiconductors so that electrons can be
thermally excited across it, but greater
than about 3 eV in a transparent materi-
al.

This model has proved itself extremely
satisfactory for the description of most
crystalline semiconductors and metals, for
many of which the band forms are known
in detail. It is perhaps remarkable that
this is so, because the model neglects the
interaction between electrons, except in
the sense of the Hartree-Fock average,
and this cannot be a small perturbation.
Of course this interaction has been taken
into account in more sophisticated work,
particularly in describing magnetic
properties and, as we shall see, it leads to
one form of metal-insulator transition.

A branch of physics, however, in which
the Wilson formulation has proved less
satisfactory is that of the behavior of
electrons in noncrystalline materials,
particularly glasses. Since the band-gap
itself depends on Bragg reflection of an
electron wave from a crystalline lattice,
which cannot occur in glasses, it is not
clear how the gap occurs, but the mere
fact that many glasses are transparent
shows that it is present. In fact, for un-
derstanding some of the properties of
glasses, it has proved convenient to go '
back to pre-quantum mechanical ideas
and to say that the electrons are stuck in
bonds. This is because, as first shown by
B. T. Kolomiets's school in Leningrad
some 20 years ago, the semiconducting
glass such as arsenic telluride (AssTes)
cannot be doped with impurities. If

germanium is added it does not go into a
substitutional position replacing three-
fold coordinated arsenic with one electron
loosely bound, as must probably occur in
a crystal; on the contrary it forms four
bonds with its neighbors, so that no elec-
tron can escape easily into the conduction
band. For this reason most amorphous
semiconductors show a striking increase
in the conductivity on crystallization.

These facts suggest that an account of
metal-insulator transitions should in-
clude noncrystalline as well as crystalline
systems, and this will be attempted here.
We shall not follow the historical devel-
opment of the subject, but will rather
start with the behavior of electrons in
noncrystalline systems. Our under-
standing of the subject goes back to Philip
Anderson's1 paper, published in 1958, on
"Absence of diffusion in certain random
lattices" and to earlier experimental work
by Hellmut Fritzsche and others on im-
purity conduction. Our problem is that
of a degenerate electron gas, with states
filled up to a limiting Fermi energy £ F ,
which does not lie in a gap but on the
contrary is at an energy where the density
of states, denoted by N(Ep), is finite. In
a crystalline system such a material would
be metallic, by which we mean that the
conductivity a would tend to a finite value
(dependent on purity) as the temperature
tends to zero. In a noncrystalline mate-
rial this is not necessarily so, and a may
tend to zero, which is what we mean by
"insulating behavior." An advantage of
treating transitions in nonperiodic fields
first here is that a qualitatively correct
description can be given in terms of non-
interacting electrons, with models exactly
parallel to those of the 1930's. The elec-
tron gas is described by one-electron wave
functions </<E, solutions of the Schrodinger
equation

VH + j±[E-V{x,y,z)]+ = 0 (1)
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with electron states filled up to the energy
£p and V{x,y,z) the non-periodic poten-
tial. For crystalline materials, on the
other hand, electron-electron interaction
plays an essential role in all kinds of
metal-insulator transitions.

Noncrystalline systems

Anderson considered the solutions of
equation 1 for a crystalline array of po-
tential wells, in any one of which (denoted
by n) the lowest Is state is written 4>n (r).
If all the wells had the same depth, and
the wells were far enough apart for the
tight-binding approximation to be used,
an electron could move freely through the
array with a wave number k, with a wave
function of the type

^k = eikxuk(x,y,z) (2)

and a bandwidth B given by

B = 22/, (3)

where z is the co-ordination number and
/ the energy transfer integral

Anderson however considered wells with
a range of depth AV. If A V/B is small,
the effect is to introduce, for energies near
the middle of the band, a finite mean free
path L given (in perturbation theory)
by

a/L = O.KAV/B)2 (4)

where a is the distance between the wells.
So if A V/B approximately equals 1, L is
of order a and, according to a principle
enunciated by Ioffe and Regel, it cannot
be shorter than that. If AWB is greater
than a certain quantity, which is difficult
to calculate but later work shows to be
probably about 2 (for z = 6), Anderson
showed that all states in the band become
localized, with quantized energy values.
No diffusion or conductivity is therefore

possible without thermal activation.
In 1967 I first pointed out that if A V/B

is less than this critical value, an energy Ec
will exist such that states below it are lo-
calized and states above it "extended."
The energy Ec is often called a "mobility
edge." The expected density of states is
shown in figure 1. For energies E just
above Ec, the "tight binding" wave func-
tion is thought to have the form

\p = ^Lel7>n4>n (5)

where the >jn are random phases. For
energies just below it,

_ e-a(r-r0) (6)

where ro is the point in space where the
wave function is centered and tends to
zero as E approaches Ec, probably as « =
const(£c - E)'m. There has been some

dispute as to whether localized and non-
localized states can exist in the same en-
ergy range; in my view they cannot.
Moreover, although calculations of the
mobility edge have been made for only a
few kinds of random potential, it seems a
reasonable assumption that the behavior
illustrated in figure 1 is quite general—
although in the conduction bands of some
glasses such as vitreous SiC>2 the magni-
tude of AE seems too small to affect ap-
preciably the mobility of electrons
there.

If a conduction band containing a de-
generate electron gas has the form of fig-
ure 1, and if either the number of elec-
trons (determining the Fermi energy) or
the mobility edge or both can be varied, a
"metal-insulator transition" may occur.
If Ep lies above Ec, as in figure 1, the ma-
terial is metallic, in the sense that a tends

ENERGY

Density of states N(E) in a noncrystalline material. Here £c is the mobility edge, and energies for
which states are localized are shaded. The Fermi energy EF is marked for the case where con-
duction is metallic; if fF lies below Ec, the conductivity tends to zero with T. Figure 1
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RECIPROCALOFTEMPERATURE (1/T)

Resistivity of a system whose conduction band is illustrated in figure 1 as the Fermi energy moves
across the mobility edge. The metal-insulator transition occuring has been called an "Anderson
transition." Here t denotes Ec — EF. The factor P'3 is for two-dimensional systems; the de-
pendence is I 1 / 4 in three dimensions. Figure 2

to a finite value as T —»• 0; it will probably
vary little with temperature, because the
scattering due to disorder will be greater
than that due to phonons. If Ep lies
below Ec, a tends to zero with T.

The behavior for the two cases is illus-
trated in figure 2. In curve a, Ep lies
above Ec. In curve b it lies at Ec, and in
the other two curves below Ec. The
conductivity in case b, in the limit of low
temperatures, has the value that I have
called the "minimum metallic conduc-
tivity" and denoted by trmin. This is, in
principle, the value of the conductivity of
a metal when the mean free path L has its
minimum value, namely the distance a
between the "wells" of the Anderson

model or more generally the scale of the
fluctuations. There is a good deal more
to it than that, for example, the Anderson
localization criterion, but in three di-
mensions <rmjn comes out to roughly 0.05
e2lha, and in two dimensions 0.1 e2/h. In
both cases there is considerable uncer-
tainty in the numerical factor. When a is
3 A, <Tmin is about 500 ohms"1 cm"1,
though for impurity bands where a is
much greater it is correspondingly
smaller.

Temperature dependence

If Ep lies below Ec, two forms of con-
duction occur. At high temperatures
current will be carried by electrons ex-
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cited to the mobility edge Ec, so that

a = amm exp [-(Ec - EF)/kT] (7)

while at low temperatures, electrons near
the Fermi energy determine the cur-
rent—as in a metal. Exchanging energy
with phonons, electrons hop from one lo-
calized state to another, the conductivity
varying with temperature according to the
law

a = A exp (- (8)

A MOSFET device. Here the current flows in an inversion layer. The device measures the current
between source and drain electrodes. Figure 3

or, in two dimensions V3 replacing V4.
This kind of behavior has been ob-

served in a wide variety of systems. In
transition metal compounds of mixed
valency such as Lai-^Sr^ VO3 the number
of electrons in the vanadium 3d band
varies with x, as does the random field due
to the random positions of the ions La3+

and Sr2+. In a compensated semicon-
ductor such as silicon doped with phos-
phorus and compensated by boron the
number of electrons in the impurity band
will depend on the degree of compensa-
tion, and the random element then arises
both from the field of the charged boron
acceptors (so that an impurity band is
very close to Anderson's' model) apart
from the random positions of the donors.
But perhaps the simplest case of all is
provided by the inversion layer in a
MOSFET device. Such a device, illus-
trated in figure 3, measures the current
between the source and drain electrodes
and its dependence on the voltage be-
tween a metal "gate," across a ther-
mally-grown layer of SiO2, and the p-type
silicon. The current flows in an inversion
layer; at low temperatures the electrons
in the inversion layer form a two-dimen-
sional degenerate gas, two-dimensional in
the sense that the wave functions per-
pendicular to the interface are in the
lowest quantized state as shown. The
potential energy in which the electrons
move contains a random element, because
in the layer of vitreous silica there are
normally random charges; so a mobility
edge is expected in the range of energies
that can be occupied by electrons in the
inversion layer. Moreover their Fermi
energy can be varied and moved from
below to above the mobility edge, as in
figure 1, simply by changing the gate
voltage. The dependence of current on
temperature appears very much as in
figure 2; in particular, a variation as
exp(—B/T1/3) is observed2 over many
orders of magnitude, as are reasonable
values of amin.

On the whole, then, the model outlined
here, in which there is no interaction be-
tween electrons, gives a satisfactory
qualitative description of the electrical
properties both of compensated impurity
bands and inversion layers, except in one
respect. In the range of temperature
where the current is carried by electrons
at a mobility edge one would expect the
Hall coefficient to be activated and the
Hall mobility to be independent of T; a
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theory dating from 1971 due to Lionel
Friedman suggests that the Hall mobility
should be

MH = 0.1ea2M (9)

and sometimes this behavior is observed.
But in other cases measurements of the
Hall coefficient RH give a temperature-
independent value, 1/nec, where n de-
notes all the electrons in the conduction
band or inversion layer. This is the same
value as one finds when £p lies above Ec,
when conduction is metallic.

Naturally, in trying to understand this
discrepancy, various workers have noticed
that the interaction between electrons is
large, the average of e2/*r12 over a volume
a3 being as large or larger than the ran-
dom field V that produces Anderson lo-
calization. It has been proposed that,
owing to this interaction, some kind of
crystallization or ordering of the electrons
may occur and that charge transport can
occur by a mechanism similar to the flow
of a liquid.3 In my opinion, it is likely
that in inversion layers and compensated
impurity bands the correlation term
(e2//cri2) can be taken care of within the
Hartree-Fock approximation, and the
difficulty is our imperfect understanding
of the Hall effect. Next we shall discuss
phenomena in which correlation does play
an essential role, and shall give some in-
dication of what happens when correla-
tion and disorder affect the behavior.

Band-crossing transitions

We turn now to metal-insulator tran-
sitions in crystalline systems. Perhaps
the simplest occurs when an indirect-gap
intrinsic semiconductor with a band form
is illustrated in figure 4a is transformed
into a metal as in figure 4b, the conduc-
tion and valence bands now overlapping.
Examples are the divalent metals Yb, Ba
and Sr where the bands separate under
pressure, or the semiconductor Ti2O,s
where a gap between the two branches of
the d-band is small, but overlap occurs
either on raising the temperature or on
alloying with about ten percent of V2O;!.
A transition of this kind can be described
by the model of noninteracting electrons,
which predicts that the gap would de-
crease continuously to zero and then the
number of electrons and holes would in-
crease from zero upwards.

From 1949 onwards, however, I have
maintained that the existence of even a
very small number of free electrons and
holes at zero temperature is impossible,
because these holes would combine to-
gether to form pairs. This pairing occurs
because a Coulomb field with potential
~e2Ur always yields a bound state. A
concentration n of carriers, given by

n1/3aH =* 0.25 (10)

where aH is h'2n/me(fe
2, the hydrogen

radius, would be necessary to give enough
screening to ensure that the screened field

) exp(—qr) leads to no bound

EF -E F

(a) Indirect-gap semiconductor (b) Semimetal

Band-crossing transitions. The conduction and valence bands of an indirect gap non-metal (a);
bands overlap to form a semimetal (b). Figure 4

state. It was therefore predicted that as
some parameter (for example, volume)
was changed, there would be a sudden
change (at zero temperature) in the
number of carriers from zero to a value
given by equation 10. This argument
suggested that there might be some "ex-
citonic" phase formed of electron-hole
pairs before truly metallic behavior sets
in. Several theorists have developed this
concept, and the idea of an insulating
superfluid consisting of a Bose conden-
sation of electron-hole pairs is fascinat-
ing. But, to the best of my knowledge,
such a superfluid has not been observed,
as might have been expected, for instance,
when an electron-hole gas is formed by
optical excitation of a semiconductor.
What forms in all cases investigated is an
electron-hole gas with metallic properties.
If this is what normally occurs, an argu-
ment by W. F. Brinkman and T. M. Rice
in 1973 gives a better way of considering
the transition than that given originally
by the present author, which is as follows.
If in a semiconductor, as illustrated in
figure 4a, the conduction and valence
bands contain n electrons and holes re-
spectively, their energy is

C *>2n2/3 p2n 1/3
| ^ L _ _ C ^ _ (11)

The first term represents the kinetic en-
ergy of the electron gas and the hole gases
(neglecting any many-valley structure of
the bands), the second term, the Coulomb
attraction between the two, and the con-
stant c depends strongly on band form
and the way correlation is taken into ac-
count.

This expression has a minimum as
shown in figure 5, and the energy there is
given by

£c r i t = const. mei/h2K2 (12)
and n by an equation of the same type as
equation 10 with an appropriate constant.
The argument is that, as the band gap \E
decreases, n will jump discontinuously
from zero to the value given by equation
10, at which

A F = f • C\V\

It would be of considerable interest to
observe a discontinuous change of this
kind. For an experiment to be signifi-
cant, it must be carried out at a low
enough temperature for the number of
electrons excited thermally across the gap
to be negligible; one would then hope, if
some parameter could be varied, to ob-
serve a discontinuous change from a finite
value to zero in the activation energy t for
conduction.

But it is no use hoping to do this under
pressure. If the free energy is plotted
against volume, as in figure 6, there will be
a change of slope at the transition, with
the result that as the pressure is increased
there will be a discontinuous change of
volume from A to B. Moreover it is en-
tirely possible that the crystal structure
differs in the two phases. If the free en-
ergy of an alloy is plotted against compo-
sition, denoted by x, for ranges of x be-
tween A and B the alloy will separate into
two phases. A single phase may perhaps
be obtained by quenching; but until now
this has not been done successfully.
Moreover, in a disordered alloy the field
in which the electrons move has a random
element, and we shall see further on how
this randomness affects our conclu-
sions.

The Mott transition

Rather similar considerations apply to
an array of one-electron centers. If they
are far enough apart, they should form an
artiferromagnetic lattice, as for instance
in TiBr3. I first suggested in 1949 that, if
the distance between centers decreased,
there should be transition to a metallic
state with a density of electrons given by
equation 10; the argument based on
screening was used, and this kind of
metal-insulator transition is sometimes
called the Mott transition. More re-
cently, in 1961, John Hubbard introduced
the Hubbard Hamiltonian and the Hub-
bard intra-atomic energy U, defined as
the average of e'2/r12 when two electrons
are on one of the centers. If the centers
are far apart, the energy necessary to take
an electron from one center and put it on
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Energy ol an electron-hole gas (a) in a crystal and (b) for a noncrystalline system. Curve (i) denotes
the kinetic energy, (ii) the potential energy, and (iii) their sum. The variation of energy with number
of electrons n, shown in curve iii, has a minimum in both cases. Figure 5

another is just this quantity U; it is the
difference between the ionization energy
and the electron affinity.

An extra electron placed on one of the
centers can move to the next and so on
through the lattice, with a Bloch wave
function of the type in equation 2 and
bandwidth B\, we call this band of ener-
gies the upper Hubbard band. Similarly
the "hole" from which an electron has
been removed can move, the width of its
"lower Hubbard band" being denoted by
B<i. Apart from certain refinements, this
treatment predicts a metal-insulator
transition when the two Hubbard bands
overlap; that is, when

U - V2(Bi + B2) = 0 (14)

It is a curious coincidence that, for hy-
drogen-like centers, this leads to just the
condition of equation 10, with a value of
the constant about 0.2. The treatment as
given by Hubbard does not lead to a dis-
continuous change in n, but the band gap
described here by equation 13 is imme-
diately applicable, and a discontinuous
change is predicted, from an antifer-
romagnetic insulator state to one that is
metallic and may be antiferromagnetic
too.

Discontinuous and continuous

We may ask, has this behavior been
observed? The behavior of doped un-
compensated semiconductors was for a
long time regarded as an example of this
type of transition, and indeed the con-
centration of centers at which metallic
behavior sets in does obey equation 10 for
a very wide range of materials, the best
value of the constant being 0.2. On the
other hand the activation energy for
conduction (normally denoted by 62) goes
continuously to zero as n is increased.
This may be because the centers are dis-
tributed at random in space. However,
another random array of one-electron

centers, that provided by the solvated
electrons in solutions of alkali metals in
ammonia, shows a solubility gap with a
consolute point at —42°C; only above this
temperature can a continuous metal-
insulator transition be observed as the
concentration of alkali is changed. Ac-
cording to figure 6, this gap suggests that
there is a discontinuous change in io, and
frozen solutions of ammonia in a solvent
such as hexamethylphosphoramide may
prove to be the best way of observing it.

If so, we need a criterion to determine
how much disorder in a system is com-
patible with a discontinuity in 12- I have
suggested4 such a criterion, though its
detailed consequences have yet to be
worked out. The idea is illustrated in
figure 5. At the bottom of a band (Hub-
bard or otherwise), the density of states in
a crystalline material behaves like E1/2,
but in a noncrystalline system an expo-
nential tail is expected. Thus in equation
11, the first term, behaving like n2^, must
be replaced by a term that varies as a low
power of n for small n, and only for values
of n that bring the Fermi energy out of the
tail will a behavior as n2^ be approached.
The energy term that must replace that in
11 is shown by the dotted line in figure 5;
only if a minimum results at a negative
value of £ is a discontinuity to be ex-
pected in n.

We surmise that this criterion, if
worked out in detail, might show that a
discontinuity is to be expected for metal
in ammonia but not for metal in silicon-
phosphorus. In the former the range Aa
in the distances a between centers will be
much smaller than in Si:P, in comparison
with the hydrogen radius. For silicon-
phosphorus, in particular, doubt now
arises5 on whether the concentration at
which the transition occurs is determined
by equation 14 at all, or whether it is an
Anderson transition in which the Hub-
bard U plays little role. Certainly the

transition shows all the properties illus-
trated in figure 2, and the metallic state
has few of the properties (such as greatly
enhanced electronic specific heat and
positive thermopower) expected just on
the metallic side of a metal-insulator
transition. The condition for Anderson
localization in an impurity band has been
worked out by B. T. Debney6 and is of the
form in approximation 10 with the con-
stant equal to 0.4, although E. N. Econo-
mou and P. D. Antiniou,7 using a less re-
alistic model, find that if disorder is
"off-diagonal," that is to say with no
random fields such as those present in a
compensated semiconductor, localization
cannot occur in mid-band. At present,
then, the role of the Hubbard U remains
uncertain.

Many non-metals show transition to
the metallic state with increasing tem-
perature, and there is certainly no uni-
form model that can describe them all.
Thus Ti90,i at low temperatures is a
nonmetal with a small band gap (about
0.2 eV) separating a filled and empty band
both derived from the titanium 3d orbit-
als. The material has the corundum
structure and the gap depends on the
ratio c/a. As the temperature is raised,
electrons are excited into the conduction
band, so c/a changes in the sense needed
to diminish the gap, thus allowing more
electrons to be excited with consequent
increase in entropy. At about 400 K the
bands begin to overlap giving metallic
behavior. Overlap can also occur on
alloying with about 10% V2O3. One
might hope to see the predicted discon-
tinued change in the density of current
carriers in this system, but unfortunately
the vanadium ions produce an impurity
band, and metallic behavior begins here
at much lower concentrations than are
needed for band crossing.

The compounds V2O3 and VO2 both
show sharp transitions to metallic be-
havior as the temperature is raised; in the
former metallic behavior can also be
produced by alloying with T12O3, the
metal being an antiferromagnet, and also
by applying pressure. The low-temper-
ature phase in V2O3 is an antiferromag-
netic insulator, and so the transition can
be described as a kind of Mott transition.
The change to the metallic state is due to
a change in c/a that increases the band-
width R relative to U and the driving
force when the transition occurs as a
function of temperature is the high en-
tropy of a highly correlated "metal." VO2
with, in the high-temperature phase, the
corundum structure, appears to be a
metal in which a broad and narrow ri-
band overlap,8 giving a high electronic
specific heat and entropy. In the low
temperature phase a structural distortion
has the result that the bands do not
overlap, and the narrow filled band
should, if pairing were not allowed, give an
antiferromagnetic insulator. However,
the rutile structure does allow pairing, so
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VOLUME OR COMPOSITION

Free energy at a metal-insulator transition. The variation here is shown as either a function of
composition (x) or volume. Note discontinuity in both cases at T = 0. Figure 6

vanadium atoms move towards each
other, forming diamagnetic pairs. This
in our view is not the cause of the non-
metallic behavior, because even without
pairing the Hubbard gap would exist; it is
an example of the tendency of one-elec-
tron centers to form pairs if the structure
allows, of which we shall give another ex-
ample below (Ti4Ov).

A quite different situation is presented
by Fe3C>4, in which Fe2+ and Fe3+ order
on available sites at low temperatures,
giving nonmetallic behavior, and show a
sharp transition at 110 K to a situation
where they are random, the conductivity
then being of order 102 ohms"1 cm"1.
This "Verwey" transition is named after
its discoverer E. J. Verwey. There is
some controversy as to whether the
problem should be treated as a charge-
density wave that disappears as the tem-
perature is raised, or as a Bragg-Williams
disordering of heavy current carriers,
perhaps polarons. The entropy of the
transition is about 1WV/e log 2, about half
what would be suggested by the latter
hypothesis, but other phenomena such as
a Mossbauer splitting suggest a charge
density wave. Doubtless a correct treat-
ment will contain elements of both rep-
resentations. A similar behavior is shown
by Ti4O7 where the number of electrons
is also half the number of sites; at low
temperatures they are ordered, at high
temperatures disordered with near me-
tallic behavior, but an intermediate range
of temperature appears in which the ma-
terial conducts fairly well. In this tem-
perature range a shows a small activation
energy but at the same time the material
is diamagnetic. It is surmised9 that the
electrons form diamagnetic pairs, the ti-
tanium atoms in each pair being displaced
towards each other, but that these pairs
are mobile with an activation energy of
polaron type. We call them "bipolarons."
Bipolarons may also exist in some other
transition-metal compounds, but Ti4O7

is certainly the clearest current example.
There is still much that is obscure

about these fascinating materials.10

Some, perhaps V2O3 may be so compli-
cated—involving correlation, lattice dis-
tortion, polarons and a complicated band
structure—that a simple theory may
forever elude us. In materials showing a
Verwey transition, such as FeijC^ and
Ti4O7, the same may be true, but some
features invite a qualitative explanation.
One is that quite weak alloying, about 1%
of V4O7 in Ti4O7 for instance, suppresses
the ordered low-temperature phase. This
is hardly to be understood on a Bragg-
Williams model and suggests that the
concept of a charge-density wave of bi-
polarons may have to be adopted.
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