times, but it is not necessarily immoral for it to be accompanied by fanfare.

Yung-Chen Lu's book is an introduction to mathematical aspects of catastrophe theory and he states that he aims it so that "... even strong undergraduate students should be able to understand most of the contents." Frankly, I don't think he has succeeded. Pedagogically the book is neither better nor worse than most others on the subject. His chapter on catastrophe theory is a bit more clear and down to earth than what Thom is wont to write, but then again it lacks Thom's flights of poetry. For the interested physicist who is willing to devote a few hours to gaining a slight acquaintance with the subject I would recommend M. Golubitsky's "An Introduction to Catastrophe Theory and its Applications" (to appear shortly in SIAM Review).

LAWRENCE S. SCHULMAN
Technion
Haifa, Israel
and
Indiana University
Bloomington

Fundamental Principles of Heat Transfer

S. Whitaker 556 pp. Pergamon, Elmsford, N.Y., 1977, \$50.00

The growing concern about the global energy problem has recently aroused a great number of physicists to take a new, close look at the various elements of energy technology such as energy transformation, energy storage, energy transport and energy conservation. Studies related to any of these elements, however, often require a good knowledge of the subject of heat transfer, which has become a welldeveloped engineering discipline over the last twenty years. In fact, the recent focus on energy has resulted in a noticeable increase in the interest in heat transfer, accompanied naturally by an outburst of books, specialized monographs or general elementary texts on the subject. In the latter category, indeed, several have come out during the past year, and S. Whitaker's book is one of them.

The book provides a fundamental treatment of various heat transfer processes, namely heat conduction, convection, radiation, and boiling and condensation. It is intended as a textbook for a beginning course in heat transfer in an undergraduate engineering curriculum. The coverage of material, however, is sufficiently extensive that this book can be also used as a general, introductory reference book for non-engineering students. The students are expected to have an elementary background in thermodynamics and fluid mechanics, as well as

Materials Scientists

For an expanding research program in applied superconductivity

The Solid State Science Division of Argonne National Laboratory offers the opportunity to explore various aspects of applied superconductivity in programs that provide excellent potential for professional achievement and growth. Openings are for:

Staff Scientist, R&D

Several years of experience beyond PhD or equivalent is necessary. Scientists with electrical, metallurgical or other engineering backgrounds are invited to apply. Some combination of experience in the following areas would be beneficial: materials science; TEM; SEM; X-Ray analysis; electrical power distribution; thin film deposition or high vacuum techniques. Position does not require intimate knowledge of superconductivity — although any work in this area would be helpful.

Initially, you will be responsible for conceiving, designing, setting up and carrying out an experimental program that will involve parts of several ongoing projects. Eventually, you will be expected to initiate and develop projects on your own. Scope will include collaborative efforts with scientists performing similar research and supervision of support staff. A strong interest in conducting independent research is also essential.

Research Scientist - High Temperature Superconductors

Postdoctoral research position will involve the fabrication and study of thin film SQUIDS made with high temperature superconductors. Candidate must have an interest in investigating Josephson effects in various types of weak links as well as in developing and studying the properties of high temperature SQUIDS. Some combination of experience in such areas as sputtering, radiation damage, ion implantation, and materials characterization techniques desired.

Research Scientists — Superconducting Electronic Circuits

Postdoctoral research position will involve the fabrication of superconducting electronic circuitry. Experience in the following areas essential, thin film deposition techniques include sputtering and electron beam evaporation; photolithography; and circuit analysis techniques.

All positions provide commensurate salaries and outstanding benefits, Send resume, including salary history, to: Walter D. McFall, Argonne National Laboratory, Dept. SSS772B, 9700 South Cass Avenue, Argonne, IL 60439.

U of C. AUA USENDA

An Equal Opportunity Employer, m/f HDCPD

Why Professor Trefil's Course Grew from 40 to 600

DEPARTMENT OF PHYSICS

UNIVERSITY OF VIRGINIA
CHARLOTTESVILLE, VIRGINIA
22901

RE: PHYSICS AS A LIBERAL ART

Dear Colleague:

I am writing to share with you some of my thoughts and experiences in an area that concerns us all - the teaching of physics to non-scientists. Right now, there are two basic approaches to this subject: a phenomenon oriented "Mr. Wizard" approach, and "Physics for Poets". You've probably seen texts here at the University of Virginia I have been developing at last five years slightly different point of view, which I call Physics as a Liberal Art. Let

The basic idea in this course, and in the textbook written to go with it, is to take the student through a historical development of science from the Babylonians worrying about the phases of the moon to modern physicists

In this way the student can start with the simplest problems - problems that are relatively easy for him to handle - and still get some feeling for how research is done and how the scientific method works. For example, a surprising number of students do not know why the moon has phases, and this explanation can be used to discuss the general problems of observing the large from a rotating point of observation. In a similar way, the work of experimental error in science example for a discussion of the importance of can be seen in its historical context and is much easier to understand.

The book is designed for a one-year course, but I have found that there is a natural division between classical and modern physics. Students coming the second semester are given a brief summary of Newton's keeping up with the development of quantum mechanics.

The course uses very little mathematics. The emphasis throughout is on understanding concepts, rather than on being able to work problems. I think is very appropriate for liberal arts students who, after all, will never be called upon to calculate the orbit of a satellite. I look on this sort of versities and colleges. Our goal is not to turn out miniature physicists, but to give our students a little better understanding of the world around we learn about that world.

Yours truly,

James S. Trefil

Professor of Physics

PHYSICS AS A LIBERAL ART By James S. Trefil, University of Virginia

CONTENTS: How We Know Things. Philosophy and Technology in Two Ancient Civilizations. The Birth of Human Reason. The Flowering and Death of Greek Science. The Copernican Revolution. The Scientific Method. The Newtonian World. Electricity and Magnetism—The Scientific Method in Action. The Theory of Relativity. Scientific Ideas in the Nineteenth Century. Splitting the Atom. Quantum Mechanics. The Nucleus. Nuclear Reactors and Radiation Safety. Elementary Particles. Bibliography. Appendices. Index.

1978 510 pp. 019863-5 hardbound \$14.50

Instructor's Manual Available

To request an examination copy, write on your department's letterhead to Dept. 006 at the address below. Please include course title, enrollment, and present text. If you would like to examine the instructor's manual as well, please indicate that in your letter.

Visit us in San Francisco at booth # 237

PERGAMON PRESS

Maxwell House, Fairview Park, Elmsford, N.Y. 10523 In Canada: 75 The East Mall, Toronto, Ontario M8Z 5W3 Outside of North America: Headington Hill Hall, Oxford OX3 OBW, England

seccessos e constituir de la constituir

some familiarity with ordinary differential equations and vector analysis.

Compared with other standard heattransfer texts, this book is very much the same in terms of both the sequential development and the topical coverage. The main difference from the others lies in its detailed presentation, which provides much more mathematical development and derivations as well as graphical representations. Moreover, it contains in each chapter a worked-out design problem, several practical examples, and a number of homework problems. As a result, the book is considerably bulkier and lengthier (556 pages in the standard large size of 21.5×28 cm) than all other introductory texts. This is probably a natural outgrowth of the author's earlier book on elementary heat transfer analy-

Despite its impressive size and comprehensiveness, however, some important topics are not covered. Notably missing are gaseous radiation and combined heat and mass transfer, which are assuming increasingly significant roles in modern technological problems. The value of the book as a general reference would also have been enhanced if a few topics of current interest, such as the heat pipe, thermal contact resistance and heat transfer in high-speed flows, had been briefly introduced and discussed.

Finally, all the property values, examples and problems are still based on the British unit system, while all other recent texts have adopted either the SI system or the mixed SI and British unit system. This decision may present a problem to people outside the engineering community.

C. L, TIEN

Mechanical Engineering Department

University of California

Berkeley

book notes

Mars and its Satellites: A Detailed Commentary on the Nomenclature. J. Blunck. 200 pp. Exposition, Hicksville, N.Y., 1977. \$10.00.

Since details of the Martian surface were first mapped in the mid-17th century by Christiaan Huygens, the task of naming these features has been a continuous and increasing problem. Individual astronomers have used different systems. leading to much confusion. Only with Giovanni Schiaparelli's nomenclature, deriving from the old geography and its connected mythology and first seen on his chart of 1877, has some order developed. In his introduction Jürgen Blunck describes the various systems of nomenclature that have been proposed during the past 100 years and summarizes the naming procedures adopted in a series of InNaval Oceanographic Laboratory

NORDA is seeking PHYSICISTS

TWO POSITIONS

(Announcement #77-045A-1 & Announcement #77-046A-1)

GS-12 - \$21,883-\$28,444 GS-13 - \$26,022-\$33,825

The Numerical Modeling Division of the Naval Oceanographic Laboratory, NORDA, is seeking two (2) Principal Investigators for Model Development and Model Applications. Each requires an individual with experience and demonstrated capability in ocean acoustic propagation and ambient noise studies, numerical modeling, and application of numerical models.

Position #77-045A-1 is the P.I. for development of wave theory and ray theory numerical models of sound propagation including boundary interaction, range de-

pendent environment, fluctuations and other state-of-the art problems.

Position #77-046A-1 is the P.I. for application of models to model evaluation, sensitivity analysis, pre-exercise modeling, experiment planning, scenarios and studies.

Each is responsible for initiating, planning, participating in, and leading a team effort in performing study and development tasks ranging from basic research to advanced development. Applicants should be recognized contributors to these professional fields.

SUPERVISORY RESEARCH PHYSICIST

GS-14 - \$30,750 - \$39,975 (Announcement #77-024A-1)

NORDA is also seeking a Supervisory Research Physicist who will serve as Head, Acoustic Models Branch, The Branch has responsibility for technology transfer from broad based research community to the specific ocean acoustic numerical model requirements of the Navy for strategic planning, tactical operations, and systems design and evaluation. Selectee responsible for initiating, planning, organizing, directing and carrying through to completion major efforts in model development and application from basic ranging research

through exploratory development to advanced development. Current studies include propagation in range varying environments, bottom interaction, fluctuations, ambient noise directionality and depth dependent, fronts and eddy effects, and regional assessments. Position requires considerable experience and demonstrated expertise in ocean acoustics and numerical modeling and their relationship to Navy problems. Particular expertise is required in application of models to studies, scenarios, experiment planning and analysis.

Interested candidates should submit Personal Qualifications Statement, Standard Form 171, including list of publications and references to:

Civilian Personnel Office (Code 123)

Naval Ocean Research & Development Activity

NSTL Station, Mississippi 39529

These positions are in the Federal Career Service with all Civil Service benefits.

Equal Opportunity Employer