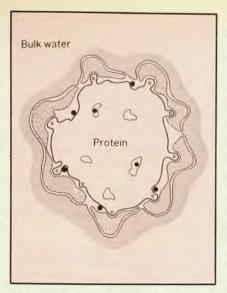
sion should suffice to familiarize the student with some of the principal methods currently employed. From the viewpoint of a physics student, only the chapter on light scattering is disappointing, but this should not be accounted a significant deficiency in the book. This topic plays no important role in aerosol behavior, and the author's ostensible purpose for introducing it at all is for its role in atmospheric turbidity and aerosol measurement.

Illustrative examples are worked throughout the book, and each chapter has numerous homework problems plus a set of references to the original literature. In accordance with the author's interests, air-pollution aerosols are emphasized.

Smoke, Dust and Haze is the first published book on aerosols written primarily for classroom use. It was written explicitly for chemical- and environmental-engineering first-year-graduate students but could serve excellently as a physics course to introduce students to the nature of applied science. subject matter is highly interdisciplinary, with applications of the theory frequently mentioned but never dwelt upon at length. Overall objectives of the field vis-à-vis applications are made clear while interrelating various physical phenomena via the general dynamical equation for aerosol behavior. The roles of this equation and its approximate solutions are delineated in the case of air-pollution studies.


This book can serve both physics students and research workers as a source of intrinsically interesting research topics in a relatively poorly understood physical domain. In many cases Friedlander quite explicitly points to gaps in the field that need elucidation, while in others it is clear that the simplicity of the treatment bespeaks the absence of detailed understanding of the phenomena. In other, currently emerging or untreated areas that are not mentioned, the reader often may assume quite correctly that considerable work remains to be done.

WILLIAM H. MARLOW Department of Applied Science Brookhaven National Laboratory Upton, L.I., N.Y.

Intermolecular Interactions and Biomolecular Organization

A. J. Hopfinger 395 pp. Wiley-Interscience, New York, 1977. \$26.00

The organic molecules of biology interact with one another in distinctive and definite ways that are certainly an important part of the organization of a living system. The book's subject is still a complex one, because we do not yet feel confident of the

Protein-water organization. In this crosssectional view of a globular protein, black dots represent rigidly bound molecules, and c's are charged side chains. The crosshatched areas indicate bound water, while gray marks the transition region. From the book.

unifying principles we could use to put order into our thinking. A fair amount of our present knowledge about intermolecular interactions is treated in this book, and the complexity is all too apparent. The surface conformations and the relationships between molecules are treated with confidence for those that can be dealt with; obviously there are many more, and the final realm of knowledge that may be needed to understand a living cell in these terms is staggeringly vast. It is so vast that one can not help wondering if this has to be the way.

The early part of the book deals with the interactions of a number of small molecules with themselves and with the solvent. The interaction of water with proteins is treated next, and this leads to the interactions of drug molecules with proteins. Three chapters on DNA follow, treating hydration, intercalation and complexes with synthetic basic polypeptides. Two chapters on polysaccharides and their derivatives and interactions are next. A chapter on ions and biological molecules introduces the subject of biomolecular aggregation and association, then a chapter on theories of interactions is followed by a discussion of ultrastructural organization, and a chapter on generalizations and speculations ends the book.

The author has undoubted competence in his field. One is truly impressed by the amount and the diversity of the information that he has brought together. It is very difficult for a physically minded life scientist to fail to find some topic of interest; indeed, several are to be expected. So for a reference book this volume is clearly valuable. It is also refreshing to find a book like this written by

one individual and thus characterized by the personal note.

On the negative side is the difficulty of reading the material. The writing is full of jargon, poorly defined sets of initials and sentences whose meaning one may only grasp after a second try. I found the book very hard to read, and thinking it must be my own obtuseness I consulted others-with no contradiction to my own impression. It is a real pity, because this is an area in which physicists may want to start to change their research area from more conventional physics to life-science physics. The book should have some appeal to such an individual, yet I doubt if very many will be able to make use of the very real expertise which has gone into putting it together. In particular the first chapter can "turn you off" fast. By determinedly ignoring this first chapter and reading ahead, I found the book to have real value.

If you are well up in the jargon of macromolecular physical studies, then this will be a most useful book; a lot of work went into it. If you are a physicist seeking to look at living systems as a change of interest, then I can not recommend it. In any event this is a sort of book that has a worthy place on library shelves, and a good many graduate students will find themselves working through specific parts of it.

ERNEST POLLARD Department of Biophysics Pennsylvania State University University Park

book notes

The Uncertainty Principle and Foundations of Quantum Mechanics: A Fifty Years' Survey. W. C. Price, S. S. Chissick, eds. 572 pp. Wiley-Interscience, New York, 1977. \$42.00

This collection of 25 papers published as a tribute to the late Werner Heisenberg commemorates his formulation, in the spring of 1925, of quantum mechanics. "The discoverer of the quantum theory and the uncertainty principle," says Hans Matthöfer in his Foreword, "was required to leave the solid ground of classical physics. One of the most significant changes in our comprehension of the universe . . . was wrought by the departure from the determinacy of physical phenomena and by far deeper-reaching relativization of the law of causality. Heisenberg himself took part in the book's organization before his death last year, and the first paper in the volume is his "Remarks on the Origin of the Relations of Uncertainty," a personal recollection. This and the other contributions are grouped under four headings: "Quantum Uncertainty Description." "Measurement Theory," "Formal Quan-