HIGH SPEED LENS EXTREME ULTRAVIOLET

THE LYMAN-ALPHA I LENS

Spectral Transmission: 1000 A° to I.R. (200 A on special order) 200 mm F/2.8

Type: Computer Derived Reflective

Weight: 14 ounces Length: 5 inches

Focusing Range: 12 inches to infinity Angular Field: 12° (linear 43 mm)

Resolution: @ 12 inches 60 L/mm

@ infinity 25 L/mm

Back Focus: 2 inches Base Price: \$395.00

Adapters available for most 35 mm SLR cameras, 16 mm movie, TV cameras, image intensifiers, photo detectors etc.

Other lenses in stock from 60 mm to 1000 mm. Catalog available upon request.

NYE OPTICAL CO.

8781 Troy Street Spring Valley, Calif. 92077 Phone 714/466-2200

Circle No. 41 on Reader Service Card

PHYSICISTS

Theoretical and experimental physics assignments. New graduates or experienced plasma physicists needed for wide variety of technical positions.

ELECTRICAL ENGINEERS

Conceptual and detailed engineering design of high power pulsed systems, high current switching, magnet power supplies used in fusion research program.

Interested candidates should submit resumes to: Manager of Employment, Dept. 718, General Atomic Co., P.O. Box 81608, San Diego, CA 92138.

An equal opportunity employer M/F

we hear that

physical chemistry at the University of Illinois.

The American Geophysical Union has presented its Walter H. Bucher Medal to Bruce Heezen and its James B. Macelwane Award to Paul Richards; both recipients are faculty members of the Columbia University department of geology.

Newly elected as foreign members of the Royal Society are Erich Hückel (formerly of University of Marburg, Federal Republic of Germany) and Ephraim Katzir (Weizmann Institute of Science, Rehovoth, Israel).

The new chairman of the University of Rochester department of physics is Harry Gove, a faculty member since 1963 and also the director of the University's nuclear-structure research laboratory.

Formerly of Wesleyan University, John U. Trefny has been appointed assistant professor of physics at the Colorado School of Mines.

The Harvey Prize in science and technology of the Technion (Israel), including \$35 000, has been awarded to Freeman John Dyson of the Princeton University Institute for Applied Science.

The first occupant of the recently endowed Thomas Dudley Cabot Institute Chair at the Massachusetts Institute of Technology is **Samuel C.C. Ting.** professor of physics and co-recipient of the 1976 Nobel Prize in Physics.

Gerson Goldhaber, physics group leader at Lawrence Berkeley Laboratory and University of California, Berkeley professor of physics, has been named California Scientist of the Year by the California Museum Foundation.

Recently appointed assistant professors of physics at Stanford University are Stuart Freedman (Princeton University) and Harriss T. King (Rutgers University).

David J. Dumin, formerly technical director of Allied Chemical's synthetic crystal division, has been appointed professor of engineering at Clemson University.

obituaries

Erwin W. Mueller

Erwin W. Mueller, an Evan Pugh research professor emeritus of physics at The Pennsylvania State University, died 17 May at the age of 65, following a stroke suffered at a National Academy of Sciences meeting in Washington, D.C.

Mueller was born and educated in Berlin, Germany. He studied physics under Nobel Laureate Gustav Hertz at the Technical University in Berlin. Shortly after obtaining his doctorate in 1936, Mueller conceived the idea of the field-emission microscope, which enabled him to image the surface of submicroscopic metal crystals with a resolution of about 20 angstroms. For the first time, the diffusion and reconstruction of surface layers could be vividly seen. In 1941 he discovered field desorption—removal of surface atoms at low temperature by application of a high positive electric field.

With an ambition to see individual atoms by improving the resolution of the field-emission microscope, he investigated the possibility of imaging surface atoms by adsorption and subsequent field desorption of gas atoms. This work led to his invention of the field-ion microscope in 1951 at the Fritz Haber Institute of the Max Planck Society in Berlin. In 1952 he was invited to the US for a lecture tour. After giving an inspiring colloquium he was invited to take a position in the physics department of The Pennsylvania

State University as a research professor.

There he developed most of the techniques and elucidated the physical process in field-ion image formation, in ad-

MUELLER

dition to perfecting the field-ion microscope. In 1955 he achieved atomic resolution of the field-ion microscope by cryogenic cooling of the specimen. For this achievement he became world famous as the first man to "see" atoms.

In 1967 he introduced the atom-probe field-ion microscope—a combination of a field-ion microscope with a time-offlight mass spectrometer-which opened a new dimension in field-ion microscopy. Now not only could an atom be seen, but also its chemical identity could be ascertained. This atom-probe microscope is the most sensitive analytical tool in existence, being capable of analyzing a single

Mueller's beautiful field-ion micrographs have aroused the interest of many people and hundreds of elementary textbooks published around the world use his micrographs for both scientific illustrations and esthetic attraction.

Mueller's numerous scientific contributions have been described in his two books, four book chapters and more than 200 papers. Although he is best known for his inventions, the scope and impact of his work extend to many areas of surface science. He was one of the few early scientists to contribute extensively to our present knowledge of solid surfaces.

His scientific achievements were recognized by the science community with numerous awards, such as the Davisson-Germer Prize of The American Physical Society, the first Medard W. Welch Gold Medal of the American Vacuum Society and the Gauss Medal of Germany. He was also an elected and honorary member of many scientific societies.

A scientist with undiminishing energy, Mueller often participated in the construction of elaborate instruments. His knowledge of practical experimental techniques was enormous. A student could not only benefit from discussing scientific problems with him, but also learn from him practical techniques unavailable in books.

His sudden death is a shock to his friends and a great loss to the scientific community, but his fame will endure through time as will his scientific achievements.

T. T. TSONG The Pennsylvania State University

Crispin Calvo

Crispin Calvo, professor of chemistry at McMaster University in Hamilton, Ontario, died 19 February at the age of 47.

Calvo earned his doctorate at Rutgers University in 1954 and the following year joined the research staff at RCA's David Sarnoff Laboratories (Princeton, N.J.) as an engineer in the chemistry department. In 1960 he became a faculty member at McMaster University where he became professor in 1968.

His research specialities included x-ray crystallography and structure determination. Among his investigations, Calvo studied the relationship of crystal structure and luminescence in phosphate, arsenate and vanadate systems.

Our Lightweight Champions!

Many of the cryostats we design and fabricate are of lightweight aluminum for fast cool down and minimum cryogen use

Our extensive involvement in aerospace projects is attributed to our ability in designing and producing systems that are lightweight, yet high in strength. Our welders are capable of welding aluminum units together with the same exactness as they achieve with stainless steel.

Optimum designs usually provide for composites of materials, therefore, high quality welding, or brazing, and fabrication of all materials . . . aluminum, stainless steel, brass, copper and beryllium are required at Cryogenic Associates.

Our engineers, welders, and fabricators compose a team of the highest quality in solving cryogenic problems. The next time you are looking for an "air tight" solution, call our team in to help you.

... for the finest in Cryogenic Systems."

CRYOGENIC ASSOCIATES

1718 North Luett Avenue Indianapolis, Indiana 46222 Phone: (317) 632-2515

Circle No. 27 on Reader Service Card

Gaertner optical/instrument benches in three styles with accessories to meet your special needs

Precision Lathe Bed Optical Bench.

Exceptionally versatile, for the most critical applications involving checking optics and experimental setups.

Lift-off carriages. Two basic lengths (120cm and 160cm) can be joined in any combination to meet your needs.

Rectangular Optical Benches.

Two sizes, with and without air suspension. Frameless, magnetic work surface.

Low Profile Optical Bench.

Lightweight, rigid, inexpensive, for scores of professional uses where fixed or moving alignment is needed. 1/4

meter to 4 meter; accepts standard Gaertner lathe bed carriages. Scales read to 1mm.

Call or write for information and literature. GAERTNER SCIENTIFIC COMPANY 1201 Wrightwood Avenue, Chicago, IL 60614 Phone: (312) 281-5335