
The magnetism
of rare-earth metals

Although they are chemically similar, these fifteen elements—one
sixth of the periodic table—exhibit a broad spectrum of unusual magnetic

properties that may be custom controlled by alloying.

In the last two decades a revolutionary
improvement has taken place in our un-
derstanding of the magnetic behavior of
solids. A major contribution to this de-
velopment has been made with the in-
tense beams of neutrons now available
from research reactors. Neutrons inter-
act with magnetic systems through their
magnetic moments; the energies, mom-
enta and wavelengths of thermal neutrons
correspond with those characteristic of
solids. The changes in momentum and
energy when a neutron is magnetically
scattered in a solid therefore are readily
measured,1 yielding information on
magnetic structures and excitations that
can not be obtained by other means.

In parallel with this increase in our
knowledge of magnetic solids on the mi-
croscopic level, an expansion has taken
place in the technological applications of
magnetic materials. Examples of such
applications are improved materials for
permanent magnets, magnetic memories
and microwave devices. Our theoretical
understanding has reached the point at
which it is frequently possible to synthe-
size materials with predetermined mag-
netic properties, and there is little doubt
that the industrial use of such materials
in sophisticated devices will continue to
increase steadily.

In this article I will review briefly our
knowledge and understanding of the
magnetism of the largest group of mag-
netic elements, the rare-earth metals,
which comprise about one sixth of all the
stable elements. Although less familiar
than the transition-metal ferromagnets,
iron, cobalt and nickel, the rare earths and
their compounds form a class of materials
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with an enormous variety of magnetic
properties. Furthermore, despite this
variety, they are in many respects better
understood than more familiar magnetic
substances. As we shall see, their be-
havior can be explained qualitatively—
and often quantitatively—in terms of two
fundamental magnetic interactions that,
depending on the circumstances, can give
rise to a remarkable variety of phenome-
na.

The rare-earth metals resemble one
another chemically and in many of their
physical properties, but they have very
different magnetic properties. The rea-
son is that the major part of their chemi-
cal and physical behavior is determined
by the 5d and 6s valence electrons, while
the successive filling of the 4f shell in the
rare earth series is responsible for the rich
variety of their magnetic properties.2

Perhaps the most striking manifestation
of this variety is the qualitative difference
between the magnetic behavior of the
light and the heavy rare earth metals, but
it may also be observed in substantial
differences between the magnetism of
neighboring elements, which are other-
wise very similar. The fact that the rare
earths display the largest known magnetic
moments, magnetic anisotropies and
magnetoelastic effects makes it possible,
by alloying them together, to produce
substances with a wide range of magnetic
properties.

The chemical similarity between the
different rare-earth metals makes their
separation a formidable task, and it was
not until Frank Spedding and his col-
leagues at Iowa State University and the
Ames Laboratory succeeded in producing
pure samples by the ion-exchange method
that it was possible to begin acquiring the
experimental information necessary for
a detailed understanding of their mag-
netism. Starting in the late 1950's,

Spedding, Sam Legvold and their stu-
dents succeeded in growing pure single
crystals and in measuring their basic
thermodynamic, magnetic and transport
properties. These crystals were made
available to Wallace Koehler and his col-
leagues at the Oak Ridge National Labo-
ratory so that they were able to extend
their earlier neutron-diffraction studies,
in powder samples, of the magnetic
structures. The detailed knowledge of
these structures attained in the early
1960's was crucial for the interpretation
of the other magnetic properties.

The power of the neutron technique
was further demonstrated when Hans
Bjerrum Miller and his colleagues at the
Ris0 Research Establishment (Denmark)
began their inelastic-scattering investi-
gations of the spin waves in terbium in the
middle 1960's. They were able to obtain
a rather complete experimental under-
standing of the magnetic interactions in
the heavy rare earths. Figure 1 shows the
DR3 reactor at Ris0, which is used to
provide an intense beam of neutrons for
these studies.

In the early 1970's the neutron studies
were extended in two important direc-
tions:
• At Ris0, an extensive series of mea-
surements was initiated on single crystals
of the light rare earths, especially
praseodymium.
• At Oak Ridge the availability of sepa-
rated isotopes allowed experiments on
many metals that, because of neutron
absorption in the natural state, could not
be studied by neutron scattering before.

Although in the preceding brief his-
torical survey I have emphasized the role
of neutrons in elucidating the magnetic
properties of the rare earths, many other
measurements (for example, of magnetic
susceptibility, magnetostriction, heat
capacity, transport properties, electro-
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The interior of the DR3 reactor at the Rise Research Establishment, Denmark, where much of the
data presented in this article was obtained. At the top is the cryogenerator for the cold-neutron
source, a container of liquid H2 placed in the reactor to moderate the neutrons, providing an intense
beam of long-wavelength neutrons. Crystal spectrometers on the lower level scatter this beam
from rare earths to provide information on their magnetic properties. Figure 1

magnetic absorption, nuclear magnetic
resonance and the Mossbauer effect) have
made valuable contributions. Further-
more, theoretical interpretations and
predictions have played a crucial part in
suggesting new lines of investigation.
Indeed, the development in our under-
standing of the rare earths over the last
twenty years provides an excellent ex-
ample of the interplay between theory
and experiment and of the complemen-
tarity of different experimental tech-
niques, both of which are characteristic of
modern solid-state physics.

Unlike that of the 3d electrons in the
transition metals, the magnetic behavior
of the 4f electrons in rare-earth atoms
persists when they are assembled in the
metallic state. Let us therefore begin
with a brief review of the magnetism of
the isolated atoms. I will then describe
the interactions of rare-earth ions in the
metals with their surroundings and with
each other, and show how these interac-
tions stabilize the complex magnetic
structures of the heavy rare earths. A
discussion of the spin-wave excitations
from the magnetically ordered state will
lead us to consider the way in which these
give detailed information about the
magnetic interactions. In pointing out

the special features of the light rare
earths, I shall make particular reference
to praseodymium, the one most exten-
sively studied. Finally, a brief survey of
some unsolved problems in rare-earth
magnetism will give us some indication of

trends and perspectives for future re-
search.

Magnetism in atoms and crystals

The magnetic properties of a rare-earth
atom with an incompletely filled 4f shell
are determined by Hund's rules. These
state that, in the ground state, the spin
and orbital angular momenta of the in-
dividual 4f electrons (s = %, / = 3) com-
bine in such a way that the total spin S is
maximized, and, subject to maximum S,
the total orbital angular momentum L is
also maximized. In the first half of the
series, the light rare earths, L and S
combine in such a way that the total an-
gular momentum is minimized, that is, J
- h — S; in the heav.y rare earths, on the
other hand, J is maximized with the value
L + S. The results of applying these
rules through the rare-earth series are
given in the table on this page. The
magnetic moment in the ground state is
given by gunJ, where TO is the Bohr
magneton and g the Lande factor, also
given in the table. Because of the rela-
tively large spin-orbit coupling, only the
lowest J multiplet is normally populated
at room temperature and below.

When rare-earth atoms condense to
form a metal, with a regular structure
such as those illustrated in figure 2, the 5d
and 6s valence electrons are freed from
the atoms and form the conduction elec-
tron gas. The 4f electrons lie well within
the ion core, however, and are conse-
quently rather effectively shielded from
their surroundings by the 5s and 5p elec-
trons. They therefore retain their mag-
netic properties, as summarized in the
table. Nevertheless, they do experience
their surroundings through a number of
interactions, predominantly the exchange
interactions and the crystal-field inter-
actions.

The exchange interaction between the
4f spin S localized at a site R and a con-

Element (ion)

Lanthanum (La3 +)
Cerium (Ce3 + )
Praseodymium (Pr3 +)
Neodymium(Nd3+)
Promethium (Pm3 +)
Samarium (Sm3 +)
Europium (Eu2 +)
Gadolinium (Gd3*)
Terbium (Tb3 +)
Dysprosium (Dy3 + )
Holmium (Ho3 +)
Erbium (Er3 +)
Thulium (Tm3 +)
Ytterbium (Yb2 + )
Lutetium (Lu3 +)

a No magnetic moment.
b No magnetic ordering above

Magnetic

L

0
3
5

6
6
5
0
0
3
5
6
6
5
0
0

1 K.
c Ordering and critical temperature unknown.
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%
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%
4
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1%
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1%
6
0
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9

0
%
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%
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2
2

%
%
%
%
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0
0

rare earths

O-DMJ + D

0
0.18
0.80
1.84
3.20
4.46

15.75
15.75
10.50
7.08
4.50
2.55
1.17
0
0

UK)

a
13
b
19
c

106 ,
94

293
230
176
130
85
57
a
a
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duction electron of spin s at position r is
given by the familiar Heisenberg form
-;(r - R)S-s. This s-f exchange inter-
action is a straightforward consequence
of the Pauli exclusion principle. The
antisymmetry of the electronic wave-
function implies an exchange correlation
for electrons of parallel spin which holds
them apart, and hence reduces their
Coulomb repulsion energy. When a
conduction electron passes in the vicinity
of an ion, this interaction results in a force
on both it and the localized spin, as illus-
trated in figure 3. The conduction elec-
tron thus carries information on the ori-
entation of the localized spin, which it
transmits to other ions by means of the s-f
exchange. The net result is an indirect
exchange interaction3 between the lo-
calized spins which, in a first approxi-
mation, also has the Heisenberg form

R,,
(1)

where the exchange integral d is a func-
tion of the vector distance R,j = R, — R;
between the ions. As we shall see, it is the
Fourier transform

R;,
(2)

of this exchange that is most readily
measured. This quantity is given in
terms of the s-f exchange and the prop-
erties of the conduction-electron gas by

^(q) = (2/iV)|;(q)|2x(q) (3)

The Fourier transform y'(q) of ;(r) ap-
pears squared because of the two inter-
actions involved in the indirect exchange
process, and x(q) is the Fourier transform
of the nonlocal susceptibility of the elec-
tron gas, which may in principle be cal-
culated from the electron band structure4;
N is the number of ions.

The strong spin-orbit coupling in the 4f
shell has the effect that J rather than S is
a constant of the motion. The exchange
is then determined by the projection of S
on J, which is {g - 1)J, so that equation
1 is replaced by

(4)= - £ <*(R,-,-)J,•
R

The exchange energy is proportional to (g
- l)2J(J + 1) and, as may be seen from
the table on page 24, is generally greater
in the heavy than in the light rare earths.
Characteristic exchange energies in the
rare earths correspond to temperatures
ranging from tens to hundreds of K.

The magnetic 4f electrons are situated
in an inhomogeneous electric field and,
because their charge clouds are highly
anisotropic, they are subjected to a torque
tending to align the moments along par-
ticular crystallographic directions, as il-
lustrated in figure 3. This single-ion
magnetic anisotropy can be very strong,

Two crystal structures of rare-earth metals, hexagonal close-packed (left) and double hexagonal
close-packed (right), differ in their stacking sequences. The hep structure, the one assumed by
all the magnetic heavy rare earths, may be thought of as two interpenetrating simple hexagonal
lattices. The c axis is coincident with the hexagonal axis, the a axis is along a line of atoms in the
basal plane and the b axis is normal to the other two. The dhep structure, common among the light
rare earths, consists of the sites marked "A," with approximate local cubic symmetry, and equivalent
sites, " B " and "C" with hexagonal symmetry. Figure 2

The two principal magnetic forces acting on rare-earth ions. In the indirect exchange interaction,
above, a conduction electron interacts successively through the s-f exchange with the localized
4f moments, tending to align the latter with particular relative orientations. The result is the effective
two-ion exchange interaction. Below, the single-ion crystal-field interaction tends to align the
moments along particular equivalent crystallographic directions, but with no preferred orientation
relative to each other. In general the two forces act together. Figure 3
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Magnetic structures of the heavy rare earths. The moments in a particular hexagonal layer are
all parallel. In the basal-plane ferromagnet, a, all moments are aligned along the direction of
magnetization. The moments in the helix, b, rotate by a specific angle between neighboring planes.
The cone, c, is a combination of a helix and an axial ferromagnetic component, so that the total
moment rotates on the surface of a cone. In the longitudinal wave structure, d, the c-axis component
varies sinusoidally, while that in the basal plane is disordered. These structures can all be under-
stood as a combination of the exchange interaction, which produces long-range periodicity along
the c axis, and the crystal fields, which tend to orient the moments. Figure 4

requiring magnetic fields of up to millions
of gauss to overcome, and making con-
tributions to the energies of the magnetic
ions of the same order of magnitude as the
exchange energy.

The electrostatic potential experienced
by a particular ion may be calculated from
Poisson's equation, if it is assumed that
the charge that gives rise to this potential
lies outside the ion. It may be expanded
in spherical harmonics about the center
of the ion by the series

V{r,0,4>) = Y. yimr'Yim(f),(l>) (5)
Im

where the yim depend on the distribution
of the external charge. By applying the
general theory of angular momenta, this
interaction may be transformed, within a

particular LSJ multiplet, to the more
convenient form5

»cf=T.Bim0r(Ji) (6)
Urn

where S/m = atyim </•')• The so-called
Stevens factor a/ for the particular ion
includes information about the anisotropy
of its charge distribution, while < ) de-
notes the expectation value for the 4f
electrons. The O/m(J) are the operator
equivalents of spherical harmonics, ob-
tained by replacing the Cartesian coor-
dinates in suitably symmetrized spherical
harmonics by the Cartesian components
of J so that, for example, 02

u(J) = |3J-- -
J(J + 1)| and OI3

6(J) = V2 j"(J, + ,-«/,.)« +
(Jx - iJy)

6\. In the hexagonal rare-earth
structures, the z axis is usually taken as
coincident with the crystal c axis, so that

the x and y axes lie in the basal plane.
The great majority of the magnetic

properties of the rare earths can be ex-
plained in terms of the two contributions
to the Hamiltonian for the magnetic ions
given by equations 4 and 6.

Magnetic structures

When cooled below a critical tempera-
ture Tc, most of the rare-earth metals
undergo a transition from a disordered
paramagnetic phase to an ordered struc-
ture with a regular arrangement of the
magnetic moments. These critical tem-
peratures are listed in the table on page
24. The magnetic structures of the heavy
rare earths, which may be studied in de-
tail by neutron diffraction,6 are notable
for their long-range periodicity along the
hexagonal axis, and the competing strong
tendency for the moments to point in
particular crystallographic directions.
These features may be associated re-
spectively with the special form of the
indirect exchange and with the crystal
fields. Figure 4 illustrates some of these
structures: the basal-plane ferromagnet,
the helix, the cone and the longitudinal
wave structure.

These forms of ordering may be ex-
pressed in terms of two basic structures,
the helix and the longitudinal wave. The
moments in a particular plane normal to
the c axis are aligned in both, but in the
helix the basal plane components change
from plane to plane according to

JIX = mJ cos Q • R,
e/,-v = m J sin Q • R;

In the longitudinal wave the c-axis com-
ponent orders in the pattern

Jiz — m J cos Q • R,
Here Q is the wavevector of the magnetic
order and lies along the hexagonal axis;
the repeat distance 2-KIQ is many lattice
spacings and in general is incommensu-
rable with the lattice periodicity. The
relative magnetization m increases
monotonically from 0 at Tc to 1 at low
temperatures. These structures may
occur simultaneously, higher harmonics
may be present and Q may be zero, in
which case the magnetization has a fer-
romagnetic component.

The transition temperature is given in
mean-field theory by

kTc=
lk<?(Q)(g-l)2J(J+l) .(7)

A particular metal may form different
magnetic structures in different temper-
ature ranges; for example, terbium forms
a helical structure between 230 K and 219
K and a ferromagnetic structure at lower
temperatures.

The origin of the long-range periodic
ordering may be understood by consid-
ering the indirect-exchange Hamiltonian
of equation 4, which may be written in
terms of Fourier transforms as
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Exchange in real and reciprocal space in terbium. Each point in the
plot on the left represents the interaction between particular pairs of
magnetic ions at 4.2 K; positive values of S(R) favor a parallel, negative
values an antiparallel, alignment. Because it is mediated by the con-
duction electrons, the exchange interaction is long range and oscillatory.

Its Fourier transform (right) in the c direction at 214 K (in an alloy with 10 %
Ho) exhibits a peak in the helical phase, which stabilizes this phase
against the anisotropy forces favoring ferromagnetism. With reduced
temperature, this peak becomes less pronounced; it is absent in the
ferromagnetic phase at 185 K. Figure 5

where J(q) =N~U2 2, J,e<>R<. Because
the sum Zq J(q)-J(—q) has the constant
value NJ(J + 1), the contribution of in-
direct exchange to the total energy will be
minimized by the formation of a periodic
structure characterized by that value of Q
for which <#(Q) assumes its maximum
value.

The indirect exchange in the rare earth
metals is mediated by the conduction
electrons, and is therefore of long range,
as illustrated in figure 5a. Because of the
form of the energy bands and Fermi sur-
face,4 x(q) may have a maximum at non-
zero q, and hence so may <#(q). An ex-
ample is shown in figure 5b. Under such
circumstances exchange will tend to sta-
bilize a periodic structure.

On the other hand, the crystal fields
always tend to align the moments along
crystal symmetry directions and hence
favor ferromagnetism. For example, if
£20 in equation 6 is positive, the moments
will tend to be in the basal plane, while a
negative B^ will give a preferred orien-
tation along the hexagonal axis. In ter-
bium and thulium B->» is positive and
negative respectively, and magnetic fields
of several million gauss are required to
overcome the axial anisotropy field.
Similarly Bfi6 gives rise to an anisotropy
with hexagonal symmetry, resulting in a
preferred orientation within the plane.
At low temperatures this hexagonal an-

isotropy corresponds typically to a field
of about 100 kG, which decreases with
increasing temperature. All of the
structures of figure 4 can be understood
in terms of the combination and compe-
tition of the indirect-exchange interaction
and the single-ion anisotropy fields.

This competition may be illustrated by
the transition between the helical and
ferromagnetic structures in terbium.
Immediately below the Neel temperature,
the peak in <?(q) illustrated in figure 5b
stabilizes the helical structure. As the
temperature is reduced, however, two ef-
fects occur that tend to favor the simple
ferromagnetic structure:
• The anisotropy forces, which tend to
align the moments in the crystallographic
b direction, increase, and
• the peak in rf(q) decreases in size, as is
also illustrated in figure 5b.

The reason for the latter effect is that
the incommensurable magnetic order
provides an extra periodicity along the
hexagonal axis which, through the s-f
exchange, is felt by the conduction elec-
trons. This extra periodicity in the po-
tential gives rise to additional energy
gaps1 in the electronic energy spectrum,
as periodic potentials always do in solids,
and consequently the electron suscepti-
bility x(q) and d(q) are modified. The
helical structure therefore tends to de-
stabilize itself as it grows, and eventually

the maximum in t^(q) becomes too small
to overcome the anisotropy forces, causing
a transition to the ferromagnetic struc-
ture. Because the electronic structures
in the helical and ferromagnetic phases
differ somewhat, the peak in d-(q) van-
ishes below the transition. This need not
occur, however; in holmium and dys-
prosium, for example, the maximum
persists through the transition.

Spin waves
At low temperatures, the magnetic

moments in the rare earths are ordered in
regular magnetic structures. As the
temperature is increased, however, the
system of moments becomes progressively
disordered. This process can be de-
scribed in terms of the excitation of spin
waves in which the moment on each site
precesses about the ordered direction with
a specified frequency and a corresponding
phase relationship to its neighbors, as
figure 7 illustrates. The relationship
between the frequency and the wave-
length, or equivalently between the en-
ergy and wavevector of the quantized spin
wave, defines the magnon dispersion
relation <5(q).

When we consider the sinusoidal vari-
ation in space and time of the spin wave,
we are not surprised that the dispersion
relation depends on the Fourier trans-
form, equation 4, of the indirect-exchange
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A ferromagnetic spin wave, a normal mode of the spin system, is de -
scribed semiclassically as a precession of each spin about the mag-
netization direction with a particular frequency. The phase difference
between neighboring spins is related to the precession frequency. The

top diagram shows the spins viewed from the side and the bottom picture
shows the view from above. The energy of such a quantized spin wave,
known as a "magnon" (a linear combination of spin deviations), is
characterized by a dispersion relation <J(q). Figure 6

interaction. In fact, for an isotropic fer-
romagnet it is given by the simple ex-
pression

= J[<f(0) - (9)

The magnon energies can be measured
readily by the inelastic scattering of neu-
trons. If the scattering cross section is
measured as a function of the energy
transfer from the neutron to the crystal
while the momentum transfer is kept
constant at a value q, a peak is observed
at the energy £(q), corresponding to the
excitation by the neutron of a magnon of
this energy and wavevector in the crystal.
The whole dispersion relation may then
be determined by repeating such a scan
for different values of q. The magnon
energies have been measured in gadoli-
nium,8 in which the 4f charge distribution
is spherical and the magnetic anisotropy
therefore very small, and the form of d{q)
may be deduced directly from the dis-
persion relation 9.

If the magnetic anisotropy is signifi-
cant, the Hamiltonian of equation 4 must
be augmented by the crystal-field term 6
and the magnon dispersion relation be-
comes more complicated. In terbium, for
example, all crystal-field terms except B_>(i
and Bgg may be neglected and the magnon
energies in the ferromagnetic phase are
given to a good approximation by

<f2(q) = \J[<f(0) - <?(q)] + 6 B2I)J}

X |J[</(0) - <*(q)] + 36 BmJ6\ (10)

where J 5 = (J - 'h)(J - 1) . . . ( « / - %).
Again the dispersion gives <?(q) in a rather
direct way but, in Contrast to the isotropic
ferromagnet, the magnon energy at zero
wavevector in the anisotropic ferromagnet
has the finite value

<?2(0) = 216 B20Be6JJ5 (11)

The origin of this magnon energy gap
is easily understood. For long-wave-
length spin waves, the deviations between
neighboring moments tend to zero and
hence so does the contribution of the ex-
change to the excitation energy, but it still

requires energy to turn the spins against
the anisotropy fields. As a result, the
magnon energy can not be less than that
in equation 11, the geometric mean of the
axial and hexagonal anisotropy ener-
gies.

The experimental dispersion relation
for terbium,9 shown in figure 7, immedi-
ately illustrates the domination of the
exchange energy over the anisotropy en-
ergy, characteristic of the heavy rare
earths. Such a magnon dispersion rela-
tion contains a great deal of information.
From equation 10 we may extract
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The energies of magnons propagating in the a
direction in terbium at 4.2 K. The dispersion
relation has two branches because of the two
atoms per unit cell in the hep structure; the
splitting in the lower branch is due to the inter-
action with the phonons. The exchange forces
can be deduced from the dependence of the
magnon energy on the wavevector, and the
energy gap at zero wavevector gives information
about the anisotropy forces. Figure 7

(?(0) and, provided that measurements
have been made throughout the Brillouin
zone.-perform a Fourier transform to give
<#(R) in a real space, as in figure 5a.

In addition, the dependence on tem-
perature, and more particularly on mag-
netic field, of the energy gap provides
detailed information on the anisotropy
fields. Such experiments in terbium have
revealed10 that an important contribution
is made to the magnetic anisotropy and
magnon energy gap by the interaction
between the magnetic moments and the
lattice strain, the magnetoelastic cou-
pling. Furthermore, the lattice strain has
been shown not to follow the precession of
the magnetic moments when a spin wave
is excited, so that the lattice is effectively
frozen.

The anisotropy forces acting on a single
rare-earth ion therefore comprise the
crystalline electric field, the magneto-
elastic coupling and the anisotropic
exchange, and it is difficult to separate
them by means of experiments on pure
metals alone. However, the crystal fields
can be studied in isolation in dilute solu-
tions of magnetic ions in nonmagnetic
hosts. In the free ion, the 2J + 1 states of
different \Mj) are degenerate, but the
crystal field in the host metal lifts this
degeneracy, and the energy levels and ei-
genfunctions may be calculated from the
Hamiltonian of equation 6. As an ex-
ample, the eigenstates of terbium in yt-
trium are shown in figure 8.

By careful measurements and analysis
of the magnetization of single crystals
over a wide range of temperatures and
magnetic fields, supplemented by neutron
scattering experiments, Peter Touborg
and J0rgen H0g>' have been able to de-
termine sufficient information about such
crystal field levels to allow a reliable de-
duction of the parameters Bim for a vari-
ety of heavy rare-earth ions dissolved in
the hexagonal close-packed host metals
lutetium, yttrium and scandium. The
yim of equation 5 are found not to depend
greatly on either the host or the rare-earth
solute, apart from 720, which varies in a

28 PHYSICS TODAY / JUNE 1977



systematic way with the ratio c/a of the
host's primitive-cell dimensions, so that
fairly reliable values may be deduced for
the pure magnetic metals from these ex-
periments. It is thereby possible to sep-
arate the crystal field, magnetoelastic and
exchange contributions to the magnetic
anisotropy.

The light rare earths

As we have noted earlier, the exchange
energy, proportional to (g - l)'2J(J + 1 ) ,
is generally smaller in the light than in the
heavy rare-earth metals. In addition, the
4f shell is more extended at the beginning
of the series so that, according to equation
6, the crystal-field energies are greater.
The result is that the dominance of the
exchange characteristic of the heavy rare
earths is reversed, and the crystal fields
tend to dominate in the light rare
earths.

The most remarkable manifestation of
this situation is found in praseodymium,
which has the double hep structure shown
in figure 2. In this structure there are two
types of ionic site, which have respectively
local hexagonal and (approximately)
cubic symmetry. The circumstance that
makes the magnetic behavior of praseo-
dymium unique among the elements is
that the crystal-field ground states of the
ions on both types of site are nondegen-
erate. According to Kramers's theorem
this can only occur for an even number of
4f electrons, because the eigenstates of
systems with an odd number of electrons
always have even degeneracy. Since a
singlet state does not carry a magnetic
moment, praseodymium does not display
magnetic ordering, even at low tempera-
tures. The magnetic moment is
quenched by the crystal field.

Of special interest is the behavior on
the hexagonal sites, where the lowest
\Mj) levels are the singlet |0) and the
excited doublet |±1>, as illustrated in
figure 9. The application of a magnetic-
field can cause a mixing of the excited
states into the ground state, giving rise to
a magnetic susceptibility per ion x, which,
neglecting exchange, is given at low tem-
peratures by the Van Vleck expression

1/x = A/2# ' 2 MB 2 « 2 (12)

where a = ( ± l | J h | 0 ) is the matrix ele-
ment of the component of J in the field
direction. Since the matrix element ot'J:

is zero, the application of a moderate field
along the c axis produces no moment on
the hexagonal sites, as confirmed by
neutron diffraction,1- whereas the sus-
ceptibility in the basal plane is quite large.
An applied field in the c direction reduces
the energy of some of the excited states
relative to |0) , however, and at 4.2 K a
field of 320 kG causes a first-order me-
tamagnetic transition to a magnetic
phase in which the induced ground state
carries a large moment.13

If the exchange interaction is included
in the molecular field approximation, the
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The energy levels of the magnetic ions due to the crystal-field interaction may be studied by dis-
solving a small amount of terbium in nonmagnetic yttrium, so that the exchange interaction is
negligible. The 2J + 1 levels corresponding to different values of Mj are degenerate in free space,
but the crystal field splits them into the pattern shown.
(|n> + | - n ) ) a n d 2 - " 2 ( | n ) - | -n>) respectively.

The symbols | n)s and | n)3 stand for 2 " "2

Figure 8

reciprocal susceptibility is modified to

X 8'MB2 L2«- J

From this expression, it is apparent that
the susceptibility diverges, corresponding
to spontaneous ferromagnetism, if

2<f(0)ct2/l > (14)

The magnetic behavior of such a singlet
ground-state system is therefore deter-
mined by the balance between the ex-
change and crystal-field interactions. If
the exchange is strong enough, magnetic
ordering results; otherwise paramagne-
tism persists down to absolute zero, if the
hyperfine interaction with the nucleus is
neglected.

The magnetic excitations in praseody-

mium are quite different from the spin
waves discussed earlier. Called magnetic
excitons, they correspond to linear com-
binations, with definite phases, of exci-
tations from the ground to excited states
on all the hexagonal or cubic ions in the
crystal. Despite this difference they may
be studied by inelastic neutron scattering
in a way that is analogous to the spin-wave
measurements described earlier. Such
experiments14 have shown that the iso-
tropic Heisenberg exchange (equation 4)
is an oversimplified form for the coupling
between the magnetic ions. The results
may be interpreted in terms of the on-
isotropic interaction

'Mn=- E <f"(R,j)J," (15)

where v labels the Cartesian coordinates.
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Such an expression accounts for the pos-
sibility that the exchange energy between
parallel moments depends, for example,
on whether they are oriented along the
hexagonal axis or are lying in the basal
plane.

The dispersion relation for the mag-
netic excitons on the hexagonal sites has
the form, at low temperatures,

SVv(q) = A2 - 2a2 A<**-V(q) (16)

where a is the matrix element of Jx or Jy.
In this case the anisotropic exchange lifts
the degeneracy of the | ± 1 > states, as fig-
ure 9 illustrates. The splitting therefore
gives a direct measurement of the ex-
change anisotropy, which is a substantial
proportion of the isotropic component.
The dispersion provides a measure of the
exchange which, in contrast to that in the
heavy rare earths, is small compared with
the crystal-field energies.

The steep temperature dependence of
the lowest-energy magnetic exciton is il-
lustrated in figure 9. As may be seen
from equation 16, the condition for the
energy of this mode to go to zero, and
hence destabilize the paramagnetic
structure, is 2(?"(q)a2/A > 1, which is just
a generalization of condition 14 for fer-
romagnetic ordering. In praseodymium,
exchange is about 90% of the value re-
quired to drive to zero the energy of this
incipient magnetic soft mode, which is
analogous to the soft phonon modes ob-
served in studies of structural phase
transitions.15 Magnetic ordering has not
been observed in neutron-diffraction
studies12 of single crystals, but the addi-
tion of a small amount of neodymium re-
sults in a periodic magnetic structure,
with a Q and polarization corresponding
to this mode. This structure may there-
fore be considered as a "frozen" exciton.
Unusual magnets

The detailed understanding of the
complex and disparate magnetic proper-
ties of the rare-earth metals already at-
tained well illustrates the sophistication
of the modern theory of magnetism.
Practically all of these properties can be
described in terms of the exchange inter-
actions, the crystal fields and the associ-
ated magnetoelastic coupling. As we
have seen, the relative magnitudes of
these interactions give rise to a broad
spectrum of magnetic behavior. The
heavy rare earths, in which the exchange
interaction generally dominates, have
been the most thoroughly investigated
experimentally; their bulk magnetic-
properties, magnetic excitations and, at
a deeper level of complexity, the interac-
tion of magnons with other excitations,9

have all been rather thoroughly studied,
so that we now have a clear understanding
of the relation between the macroscopic
and microscopic properties. At the other
extreme, in which the crystal fields dom-
inate, the magnetism of praseodymium
has recently been elucidated fairly satis-

factorily. The intermediate case, in
which all interactions have about the
same magnitude, is the most difficult to
treat, and the study of, for example, sa-
marium, which is further complicated by
its complex crystal and magnetic struc-
tures, is still only in its early stages.

The phenomenological theory of rare-
earth magnetism has reached a level at
which it is capable both of explaining the
existing data and of predicting new ef-
fects. However, the microscopic theory
of the magnetic interactions is at a much
more rudimentary stage. Some progress
has been made in calculating exchange
interactions from first principles (al-
though the subtleties of the anisotropic
exchange have not yet been included) but
computations of the crystal fields and
magnetic anisotropy are still almost
completely lacking.

Much of the understanding derived
from the investigation of the pure metals
was subsequently used in explaining and
predicting the properties of rare-earth
alloys and compounds. The extra free-
dom derived from placing a rare earth ion
in a variable microscopic environment
gives rich possibilities—both for pro-
ducing substances with predictable
magnetic properties and for discovering
new phenomena. We may expect that
this flexibility will be utilized in the future
in further improving our understanding
of the behavior of rare earth atoms in
solids.

Although industrial applications of
rare-earth metals have so far been fairly
restricted, the increasing sophistication
of modern technology could well result in
an enhanced demand for metals with
unusual, easily variable and precisely
defined magnetic properties, a demand
the rare earths will be ideally suited to
fulfill.

* * *
/ am grateful to many of my fellow rare-earth
physicists for interesting and informative
discussions of the matters covered in this ar-
ticle, and especially to my colleagues Hans
Bjerrum Miller, Jens-Christian Houmann,
Jens Jensen, Per-Anker Lindgard and Peter
Touborg.
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