
Critical-point universality
and fluids

Near a critical point the behavior of widely diverse systems
simplifies to one of a few universal patterns—but fluids for years resisted

being fit into the slot that theory had prepared for them.

Anneke Levelt Sengers, Robert Hocken and Jan V. Sengers

The similarity of critical behavior in dis-
similar systems has long fascinated sci-
entists. When Pierre Curie, in 1895,
measured the magnetic equation of state
of nickel, he was struck by how much the
curves he obtained by plotting magneti-
zation against temperature looked like the
density-temperature isobars of carbon
dioxide near the critical point. In 1907
Pierre Weiss fashioned his mean-field
theory describing the equation of state of
nickel after Van der Waals's equation for
fluids.

These old theories are not quantita-
tively correct; we now have much more
refined models, and a highly successful
new theoretical method, called the "re-
normalization-group" approach. Yet the
basic idea about the sameness of critical
behavior in unlike systems remains very
much alive. It has been the moving force
behind recent international meetings, at
which experimentalists and theorists,
physicists and chemists, experts in fluid
and solid state physics all found a com-
mon ground in the topic of critical be-
havior.

The curious fact is that fluids, the first
systems in which critical points were
found, 150 years ago, have stubbornly
refused to fit into the slot that modern
theory of critical behavior had prepared
for them. Only very recently have we
learned how fluids do fit in. Some of this
progress has resulted from optical ex-
periments performed with the 20-micro-
degree thermostat shown in figure 1. As
our story about critical-point universality
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in fluids unfolds, the reasons why fluids
have been so long in yielding will, we hope,
become clear.

Physical systems with critical points

Many physical systems have phase
transitions terminating in a critical point:
Below a characteristic critical tempera-
ture, fluids separate into liquid and vapor;
certain liquid mixtures, into two phases
of different composition. Ferromagnets
spontaneously develop a magnetization;
ferroelectrics, a polarization. Liquid
helium becomes superfluid, and many
metals become superconducting. Anti-
ferromagnets, certain ammonium salts
and binary alloys develop an ordered
phase. This ubiquity of critical-point
phase transitions is indeed impressive.
Even more impressive is the fact that such
richness and variety of physical behavior
can be understood and classified from a
common point of view. A book by Eu-
gene Stanley1 gives a general review of the
subject; the Domb—Green series2 contains
up-to-date detailed reviews.

The phase below the critical point is an
ordered phase; it can be characterized by
an order parameter that goes to zero at
the critical point. In all cases, a response
function of the order parameter (speci-
fying the response of the system to an
external stress) diverges at the critical
point, indicating that the system has
reached a limit of stability. In fluids, the
order parameter is the density difference
from critical, p — pc; its response function,
the derivative of density with respect to
pressure, is proportional to the isothermal
compressibility Kj.

When the response function diverges,
large-scale fluctuations of the order pa-
rameter can occur at low cost in free en-
ergy. These manifest themselves in an
anomalous critical scattering of light.
This "critical opalescence," which gives

near-critical fluids their typical milky
appearance, is perhaps the most striking
harbinger of the critical state. A way of
describing this phenomenon is by means
of the correlation function G(r), which
measures the extent to which local parti-
cle densities a distance r apart are corre-
lated. Ordinarily the range of G(r), the
correlation length £, is approximately the
range of interaction between two parti-
cles. In the vicinity of a critical point,
however, large-scale fluctuations are
present. That is, the correlation length
| now greatly exceeds the range of pair
interaction and, in fact, diverges at the
critical point. The Fourier transform of
G(r), the structure factor S(k), governs
the scattering power of the medium. At
the critical point S(k) diverges for small
wavenumber k, reflecting the weak de-
crease of G (r) at large r.

Due to the presence of these fluctua-
tions, many static and dynamic properties
show striking or subtle anomalies in their
behavior. Because the fluctuations ex-
tend over regions containing very many
particles, the details of the particle in-
teraction are irrelevant, and a great deal
of similarity is found in the critical be-
havior of diverse systems. This similar-
ity, which will be explained more precisely
below, is known as universality.

The anomalous behavior of physical
properties near the critical state is de-
scribed by simple rules, some of which
were already formulated by Johannes Van
der Waals in 1892. The approach of a
property to its critical value may be

Seven-layered thermostat, capable of 20-mK
stability in its core. Light traversing the fluid in
an optical cell there forms, because of the fluid's
density gradient, a diffraction pattern, which
yields its equation of state. The resulting critical
exponents are near those of the Ising model.

Figure 1
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A single curve from five different fluids, produced by scaling chemical-potential and temperature
data, illustrates the universality of fluid behavior near the critical point. The fluids are helium
3 (O), helium 4 (•) , xenon ( • ) , carbon dioxide (V) and water (A). On the coexistence boundary
x = —x0; the quantities D and x0 are system-dependent. Figure 2

written simply as a power law with a
characteristic critical exponent. For
example, the power law for the specific
heat at constant volume is, above the
critical temperature,

where AT = (T - Tc)/Tc.
In table 1 we give examples of such

power laws and of the critical anomalies
they describe for three different systems,
pure fluids near their critical points, bi-
nary liquids near their consolute points
and ferromagnets near their Curie
points.

Model systems with critical points
In attempting to understand critical

behavior, theorists have invented nu-
merous models that have critical-point
phase transitions. The earliest, the Van
der Waals (mean-field) model, correctly
represents systems with weak, long-range
forces—in which fluctuations can be ig-
nored. This model has a critical point in
all dimensions and its critical exponents
are integers or simple fractions indepen-
dent of dimension. These mean-field
exponents differ, however, from those
found in real systems with short-range

forces, as Jules Verschaffelt noted for
fluids in 1900.

Wilhelm Lenz and Ernest Ising in 1926
constructed the first statistical model for
a lattice system with short-range forces.
The "Ising model," as it is now called, is
an array of up and down spins. It was
soon followed by many other models.
The Ising, XY and Heisenberg models
represent lattice systems with, respec-
tively, one-, two- and three-component
magnetic spins. None of these models
predicts a phase transition in one di-
mension but all do in three.

Exact or approximate values of critical
exponents are known for all these models
in three dimensions. The averages of the
two most recent estimates11 for the critical
exponents of the models mentioned are
listed in table 2. Critical-exponent values
in model systems depend on the range of
the forces (long or short), the dimension-
ality d and the number of spin compo-
nents n but are independent of many
other properties of the model, such as the
lattice structure and the number of values
the spin can assume. This confirms the
notion that such details of the interaction
are irrelevant to critical behavior.

Theory predicts that each of the ex-

amples listed in the tables defines a uni-
versality class, a collection of models and
experimental systems that all have the
same critical exponents. Tsung Dao Lee
and Chen Nin Yang showed in 1952 that
the ferromagnetic Ising model was iso-
morphic with a model of the gas-liquid
transition, the so-called "lattice gas."
The expectation is therefore that fluids
belong to the universality class of the Ising
model, with d = 3 and n = 1.

Scaling: the empirical approach
The first successful attempt to bring

order into the bewildering variety of
critical exponents and power laws can
perhaps be best described as enlightened
empiricism. Benjamin Widom noticed in
1965 that all known power laws can be
derived from one assumption: that the
critical part / of the free energy is a ho-
mogeneous function of its two indepen-
dent variables x and y such that

f(\Px,\iy) = Xdf(x,y)
Here p and q are two critical exponents,
d is the dimensionality and X is an arbi-
trary constant. In the magnetic case, for
example, x is proportional to the magnetic
field H and y to the temperature differ-
ence from critical, T — Tc. All critical
exponents defined in table 1 now become
combinations of p, q and d. All ampli-
tude factors in the many power laws de-
pend only on the two scale factors relating
x and y to the physical variables, once p,
q and the form of f are given.

The homogeneity assumption is quite
restrictive: It implies that once the
anomalous free energy / is known on one
contour in the x—y plane around the crit-
ical point, then it is known everywhere.
Therefore one independent variable can
be eliminated, by a process called scaling.
How scaling works was first shown for
fluid data in 1967 by Melville Green,
Matilde Vicentini-Missoni and one of us,
Levelt Sengers.4 The process is illus-
trated in figure 2, which is an updated
version5 of the original scaling plot. It is
a graph of the scaled chemical potential,
|A^|/|Ap|4, divided by one of the free,
fluid-dependent amplitudes D, plotted as
a function of the scaled temperature, x =
AT/lApl1^, divided by the other free
amplitude, xo- Shown are equation-of-
state data over a range within 5% in tem-
perature and 30% in density of the critical
point, for five fluids, including noble
gases, quantum fluids and a highly polar
fluid, water. The critical-point scaling
function produced illustrates the power
of the homogeneity assumption; it also
demonstrates critical-point universality
by representing large amounts of data for
quite diverse fluids with only two critical
exponents.

There is, however, a problem. To
achieve scaling in this range, the following
choices had to be made for the two free
exponents: /3 = 0.35, & = 4.5. Although
these choices were quite representative of
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exponent values reported for fluids since
1900, they were different from those of the
known model systems listed in table 2. In
particular, they differed substantially
from those of the three-dimensional Ising
model, thought to be in the same univer-
sality class. This was the situation up to
a few years ago: Scaling worked well, yet
the odd values of the fluid critical expo-
nents could not be reconciled with theo-
retical expectations.

The physical basis for the homogeneity
property of the free energy in the critical
region was unknown when Widom pos-
tulated the scaling property in 1965. In
1966, however, Leo Kadanoff showed that
homogeneity follows from applying what
is now called the universality principle to
the Ising model under changes of scale.6

Since the free-energy anomaly is caused
by the presence of large-scale fluctuations,
Kadanoff reasoned, it should be possible
to describe a spin system such as the Ising
model on a scale somewhat coarser than
a lattice spacing without affecting the
character of the critical anomalies.

The result of averaging on a scale of L
lattice spacings is a system of block spins
that interact with the field and with each
other in a way that depends on the value
of L. The block system is at a new effec-
tive distance from its critical point; how-
ever, because small-scale averaging should
not affect critical behavior, the new sys-
tem is equivalent to the old. A relation-
ship is thus obtained between the anom-
alous free energies of what is effectively
the same system at different distances
from its critical point. This relationship
turns out to be identical with the homo-
geneity assumption of Widom.

The renormalization-group approach

Kadanoff s idea of studying the effect
of scale transformations on near-critical
Hamiltonians inspired the development
of a new and powerful theory, the renor-
malization-group approach. This new
theory (or method, intuition or faith, de-
pending on one's point of view) originated
in quantum field theory; it remained
largely formal until Kenneth Wilson ap-
plied it in 1971 to systems with large-scale
fluctuations, that is, to critical systems.7

The new approach studies the transfor-
mation under repeated changes of scale of
Ji/kBT, where ft is the Hamiltonian of
the system. In the remainder of this ar-
ticle the term "Hamiltonian" will be used
to refer to the quantity Hlk^T.

The two-parameter Ising-model
Hamiltonian is considered as a member of
a much wider class of Hamiltonians in a
multidimensional parameter space.
These parameters change under a scale
transformation; when the scale is changed
repeatedly these Hamiltonians will jump
along weil-defined paths in parameter
space. Critical Hamiltonians will move
along a "critical line"; because the corre-
lation length is infinite it will remain so
under any finite change of scale. Non-
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The density of a near-critical fluid, compressed by its own weight, varies with height (solid curve,
left); the density gradient peaks sharply at the level where density is critical (right). A practical
limitation to the determination of these profiles is the finite size of the probe; if a probe 1 mm high
is used to make the measurements, it will record averages (full circles) that differ considerably from
the local property. (From reference 15) Figure 3

critical Hamiltonians will move away
from this critical line, because the corre-
lation length shrinks by L each time the
length scale is increased by this factor.
The: critical Hamiltonian is expected to
stop changing after small-scale details are
averaged out; a fixed point of the trans-
formation will have been reached. From
the properties of the transformation near
such a fixed point, formulated in differ-
ential form, Wilson was able to derive the
homogeneity relation.

The renormalization-group picture of
universality is that all systems with crit-
ical Hamiltonians that move to the same
fixed point under repeated change of scale
belong in the same universality class, and
that they have the same critical exponents
and the same scaling functions. For
systems with short-range forces, the uni-
versality class is solely determined by the
system's dimensionality d and the num-
ber of spin components n.

Those Hamiltonian parameters or
fields with a difference from their critical
value that grows under renormalization
are called relevant: They move the sys-
tem away from criticality. Hamiltonians
converging to the Ising fixed point have
only two relevant fields, namely H/k^T
and 1/knT, where H is the magnetic field.
Because of the lattice-gas analogy, the
same is expected for fluids, where the
relevant fields are combinations of the
chemical potential and temperature dif-
ferences from critical.

There may be fields initially present in
the Hamiltonian that shrink under
changes of scale. These fields have dis-
appeared from the Hamiltonian by the

time the fixed point is reached, and are
therefore called irrelevant fields. J.
Hubbard and Peter Schofield showed in
1972 that the lack of symmetry of a real
fluid (as distinct from a lattice gas) does
not affect the leading anomalies and is
therefore irrelevant. Franz Wegner
showed that irrelevant fields are of im-
portance because they determine the
corrections to scaling when the system is
not asymptotically close to critical.8

In the space of Hamiltonian parameters
there may be several fixed points. De-
pending on the initial state, a critical
trajectory may first seem to approach one
fixed point but ultimately reaches an-
other; this phenomenon is called cross-
over.9 An example is a Heisenberg in-
teraction with slight anisotropy added.
David Jasnow and Michael Wortis
showed that such a system behaves as a
Heisenberg model far from the critical
point, but "crosses over" to Ising behavior
close by.

Wilson's work did not end with this
appealing picture of critical-point uni-
versality. As a second major achieve-
ment, he devised a way of actually calcu-
lating approximate values of the critical
exponents from the renormalization-
group equations. Following his lead, a
variety of sophisticated computational
methods have been developed in the last
few years, resulting in accurate values of
the critical exponents as well as the form
of the scaling functions, the structure of
corrections to scaling and nature of
crossover functions. Volume 6 of refer-
ence 2 gives an impressive overview of the
capabilities of the new methods.
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Fluid density profile

Formation of a Fraunhofer pattern. A parallel beam of light is bent through various angles by the
refractive-index gradient of the near-critical fluid in the cell on the left; the density profile of the
fluid is shown. An interference pattern is generated in the other focal plane of the lens. The
thermostat depicted in figure 1 keeps the cell at constant temperature. The equation of state near
the critical point can be deduced from the interference pattern as a function of temperature, shown
in the photograph of figure 5. Figure 4

Renormalization-group calculations
have been performed for models of spins
in a lattice. Often, however, the Hamil-
tonian is modified so as to treat spin as a
continuous variable; this is the way the
exponent values listed in table 2 were
obtained. Precise estimates of the critical
exponents for the three-dimensional Ising
model were available prior to the devel-
opment of the new approach. They had
been obtained by analyzing the coeffi-
cients of series expansions of the partition
function, an art in which the British
school of Cyril Domb, Michael Fisher and
others has long excelled.10 These se-
ries-expansion coefficients however differ
slightly but significantly from the values
we have listed for the d = 3, n = 1 class.
Moreover, the series-expansion exponents
do not accurately obey two-exponent
scaling, as it is built into Wilson's ap-
proach. Whether this discrepancy re-
flects failure of the renormalization-group
approach, exceptional behavior of the
Ising model or overly optimistic assess-
ment of the precision of the various cal-

culations is still being debated. Our own
preference for these values arises solely
from the practical observation that fluid
data fit into the universality picture more
readily with the renormalization-group
exponents for d = 3, n = 1, Ising-like
systems than with the exponents from
Ising-model series expansions.

Universality in magnets and superfluids

Although Jens Als-Nielsen and his co-
workers in 1967 reported Ising-like critical
exponents in beta brass near its order-
disorder transition,11 attempts at veri-
fying universality in magnetic systems
have led to many complications.12 The
range of most interest, temperatures
within 0.01% of critical, is usually ex-
cluded because of such disturbing effects
as impurities and lattice strains. Fur-
thermore, magnetic substances are sel-
dom true representatives of one univer-
sality class because the interactions usu-
ally have anisotropy and some long-range
character, which lead to crossover be-
havior from one universality class to an-

Table 1. Power laws and critical exponents

Property

Specific heat
Order parameter s
Response function
Critical isotherm
Correlation length
Critical correlation function

Fluid

Cv
P ~ Pc
p2KT

U — Mel
t

an

Binary liquid

cPx
<S> — 0
Xr
|M2 —

Gir)

M,|

Magnet

CH

M

Xr
\H\

G(r)

Power law

= ̂ h7-|-
= B | A T >'

~ r ± lArl
= D\s 5

= ^ l A r l "

The reduced temperature, AT, r s ( f - Tc)/Tc; them's are chemical potentials, p is the density, 0 the concentration or volume
fraction, Hthe magnetic field and Mthe magnetization. The superscript + indicates the supercritical, — the subcritical. tem-
perature range.

other. A major accomplishment of re-
normalization-group theory is its ability
to specify which properties of the Ham-
iltonian determine critical behavior and
how the crossover phenomenon occurs,
thus bringing order into a large variety of
complex phenomena. For a full treat-
ment, see the reviews by Fisher13 and by
Amnon Aharony.9

In view of the complexity of magnetic
systems, perhaps other systems should be
considered for tests of universality. Ad-
vocates of the renormalization-group
theory have not hesitated to claim appli-
cability to fluid systems. Superfluid he-
lium, they say, should belong to the uni-
versality class of the XY model, with n =
2 (see table 2).

Liquid helium near the superfluid
transition has been the subject of exten-
sive and precise studies by Guenter AHers
at Bell Labs. Two critical exponents are
experimentally accessible, namely a and
i'. In a recent review Ahlers14 quotes a =
-0.02 ± 0.02, v = 0.67 ± 0.01, values that
nicely span those expected for this uni-
versality class. The universality hy-
pothesis also implies that critical expo-
nents and amplitude ratios should be in-
dependent of the pressure at which the
transition is studied along the lambda
line. Initially, this did not appear to be
the case. A careful reanalysis of the data,
incorporating corrections to scaling as
predicted by the theory, enabled Ahlers
to remove most of the original dis-
crepancies. Although some fine points
are still being debated, the superfluid-
helium story reads like a success story for
renormalization-group theory and for
Ahlers.

Fluids

Let us now turn to less esoteric sub-
stances and ask about verification of
universality in common pure fluids and
fluid mixtures. Theory assigns to fluids
the Ising-model universality class with d
= 3 and n = 1. We have seen that appli-
cation of the scaling concepts to fluid data
in the range within 5% of the critical
temperature has led to exponent values
that differ systematically and signifi-
cantly from the Ising values. The ques-
tion is whether this difference is real, or
whether it may be due to insufficiently
close approach to the critical state.

At a first glance fluids would seem to be
ideal candidates for comparison with
theory. They are not subject to strains
and dislocations, as solids are; they can be
studied at convenient temperatures, and
even an impure fluid, a fluid mixture, is a
member of the same universality class.
Indeed, the pioneering calorimetric
studies of Alexander Voronel in the USSR
in the early 1960's, in which an Ising-like
divergence of CV was discovered in argon,
nitrogen and oxygen, brought fluids, long
neglected, back into the limelight. Vo-
ronel's work was corroborated by Michael
Moldover's Cy studies in helium and,
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later, by the refined measurements of Cv
in CO2 and xenon by Michael Bucking-
ham and his co-workers in Australia.

Unfortunately fluids present an ex-
perimental problem all their own. As a
pure fluid is brought near its critical point,
its compressibility diverges and therefore
it becomes compressed under its own
weight in the Earth's gravitational field,
as first predicted by Louis-Georges Gouy
in 1892. Thus in any finite-size sample,
substantial density gradients exist for
temperatures within 0.01% from the
critical. These density profiles limit the
validity or interpretation of thermody-
namic measurements near a critical point
and especially of weak anomalies such as
that of Cy, as was analyzed by Hartland
Schmidt, and by Pierre Hohenberg and
Martin Barmatz. There are two effects
to be considered, one fundamental, the
second merely a practical limitation that
can, at least in part, be overcome:

The fundamental effect can only be re-
moved in the absence of gravity. We
have seen that as the critical state is ap-
proached, the correlation length for den-
sity fluctuations diverges. Because of the
presence of the density gradient, however,
the critical state, in a gravitational field,
can only exist in an infinitesimally thin
layer where the density is critical: In any
earthbound experiment the correlation
length in pure fluids will not become
much larger than 10~3 mm. Sufficiently
close to the critical state, the local prop-
erties of the fluid will begin to vary ap-
preciably over heights of the order of one
correlation length; they can no longer be
identified with those of a hypothetical
homogeneous system in the thermody-
namic limit. Present-day experimenta-
tion is on the verge of entering this fasci-
nating regime.

The second effect is much more prosaic.
All known "probes" examine a finite
sample volume. When that volume con-
tains a distribution of thermodynamic
states, some average fluid property is
measured. This is illustrated in figure 3,
where the reduced density (p - f>c)/(>v ar 'd
the'density gradient are plotted as func-
tions of height for a typical fluid, xenon,
at its critical point. Also shown are the
values of these properties averaged over
a 1-mm height.

The large differences between the local
and the averaged properties make it easy
to understand why conventional experi-
ments must fail to yield the correct div-
ergences when these gradients are
present. Since density gradients begin to
develop at about 0.01% from the critical
temperature in most fluids (about 0.03
deg C from critical in CO2 and Xe), the
approach to the critical point in fluids by
conventional experiments is as limited as
in magnets. To overcome this difficulty,
there are basically three options:
• The most demanding experiments,
those involving weak anomalies, could be
carried out in space in the absence of

gravity. Indeed, the feasibility of criti-
cal-region experimentation in the coming
NASA spacelab is currently under
study.15

• One might search for fluid systems
other than pure fluids, in which the
gravity effect is less.
• Finally, one might obtain information
about near-critical behavior by a detailed
study of the density profile itself.

The last route has been followed by a
number of experimenters, beginning with
Gustav Teichner in 1904. The most
successful technique has been that de-
veloped by Lee Wilcox and David Bal-
zarini at Columbia University, and later
refined by W. Tyler Estler, one of us,
Hocken, and Thomas Charlton, working
with Wilcox at Stony Brook.16 This
technique uses the Fraunhofer diffraction
pattern produced when light traverses a
fluid in which density gradients exist.

Figure 4 explains the origin of this in-
teresting pattern. If a thin slab of fluid
is illuminated by a plane wave, light rays
crossing the fluid are bent downward by
an amount proportional to the density
gradient. Furthermore, these rays are
phase-shifted by an amount proportional
to their optical path in the fluid, which is
related to the local density through the
Lorentz-Lorenz relation. To a good ap-
proximation the fluid-density profiles are
antisymmetric with respect to the inflec-
tion point, while the density gradient is
symmetric, as figure 3 shows. Therefore,
rays entering at equal distances above and
below this plane of symmetry bend
through the same angle, but experience a
differential phase shift proportional to the
density difference between the two lev-
els.

These rays, after passing a lens, inter-
fere in its focal plane to produce the
striking pattern shown as a function of
temperature in figure 5. This picture was
obtained on a film traversing in the focal
plane while the sample's temperature was
swept linearly. Even though it took sev-
eral days to produce this picture, the
sample was never fully at equilibrium and
figure 5 should therefore be seen only as
an illustration of the method. The region
at left in the picture represents supercri-
tical states; the critical temperature oc-

An interference pattern formed by the apparatus
of figure 4. To obtain the photo, the tempera-
ture was swept slowly (several days) through the
critical region while the film was transported in
the focal plane. At the critical temperature the
fringes dip down the farthest; supercritical
temperatures are on the left. The photograph
was made by W. T. Estler. Figure 5

curs at the point where the first bright
wide fringe appears to head down towards
minus infinity. This fringe is formed by
rays that have traversed the sample very
close to the maximum of the gradient, and
therefore the deflection of this first fringe
diverges as the compressibility, namely as
\AT\~y.

When such a pattern is produced at
fixed temperature, only a thin vertical
slice of figure 5 is seen. From the pattern,
the profile of density as a function of
height can be deduced. Because the

Table 2. Critical exponents in four theoretical models

Property

Specific heat
Order parameter
Response function
Critical isotherm
Correlation length
Critical correlation

function

Exponent

a

$
7
*
V

1

Van der Waals
(any

dimensionality)

0
0.5
1
3
0.5
0

Thre

lslng(n = 1)

0.110
0.325
1.240
4.82
0.630
0.03

e-dimensional models

XY (n = 2)

-0 .007
0.346
1.316
4.80
0.669
0.03

Heisenberg
<n = 3)

-0.115
0.365
1.387
4.80
0.705
0.03
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height is directly proportional to the
chemical potential M, the density-height
relation at various temperatures is
equivalent to an equation of state. To
put it differently, the hydrostatic pressure
caused by the fluid's own weight varies
with height, so that the profiles can be
thought of as a relation between the den-
sity of the fluid and its pressure, again an
equation of state.

In a series of experiments carried out
over the past few years, one of us, Hocken,
with Moldover at the National Bureau of
Standards,17 used Wilcox's technique to
measure the equation of state of several
fluids in the range within 0.01% from the
critical temperature, which is inaccessible
to conventional techniques. The main
improvements over the previous work
were in the temperature control and
measurement system and in the design of
special cells. Figure 1 shows the cell and
the thermostat before it was closed. The
thermostat was made of seven layers of
controlled and passive symmetric shells.
This thermostat reproduced the core
temperatures with a standard deviation
of 20 microdegrees over the length of a
run, which was sometimes several
months.

Even this method is limited by the av-
eraging effects mentioned earlier. Al-
though the cell was only 3 mm thick, very
close to the critical point the rays bend so
much that they sample the fluid over a
range of heights; the only parts of the
fringe pattern that are unaffected are
those caused by rays passing near the top
and the bottom of the cell, where the
gradients are smaller. Nevertheless, a
whole new range of temperatures, from a
few hundredths of a degree to 20 micro-
degrees from critical, had been covered
entirely or in part, and the results ob-
tained were quite different from the pic-
ture that had emerged from data analysis
in the conventional regime. For all fluids
studied, the coexistence-curve exponent
/3 was considerably lower than that which
had been obtained in ranges further from
critical, while the compressibility expo-
nent 7 was higher. Because of the con-
troversial nature of these results, possible
sources of error were investigated thor-
oughly. Numerical ray tracing was done
on model profiles, to ensure that no opti-
cal effect had been misunderstood. An
experiment was done on a deliberately
contaminated sample; no effect of the
impurity on the critical exponent values
was found.

The critical exponent values obtained
for Xe, CO2, SF6 and impure SF6 were in
the range 0.321 to 0.328 for (i, 1.23 to 1.28
for 7. These values span those for the d
= 3, n =1 Ising-like universality class, as
obtained by field-theoretical methods,
very nicely, as table 2 shows. The uni-
versal amplitude ratios are also very close
to those characteristic of that universality
class. These new experimental results
are therefore in conformity with the

Magnetic buoy levitated in a fluid. The buoy,
about 1 cm high, is used to make an accurate
measurement of the fluid density. Figure 6

principle of universality, which says that
the critical behavior of fluids is the same
as that of Ising-like magnetic systems. In
fluids, however, the range of asymptotic
behavior is apparently quite small; the
earlier odd values of fluid critical expo-
nents had been obtained in ranges where
corrections to scaling are not negligible.
In fact, such a decrease in 0 on close ap-
proach to the critical point had been ob-
served previously.16'18'19

Liquid mixtures

Further confirmation has come from
recent experiments in binary liquids.
The consolute point, at which two liquids
become miscible in all proportions, is
another critical point; it is in the same
universality class as the gas-liquid critical
point. Here too theory claims the expo-
nents should be those of the Ising model.
In 1974 Balzarini had measured the ex-
ponent fi for a mixture of cyclohexane and
aniline by an optical technique related to
Wilcox's method, and he found19 0 =
0.328. He published this result without
interpretation; it was not consistent with
the Ising value from series expansions /3 =
0.3125, the only value known at the time.
Balzarini's results were at the low end of
a whole spectrum of values available in
the literature.-0 To clarify the situation
Sandra Greer of the National Bureau of

Standards undertook, in 1975, a precise
direct determination of the coexisting
densities of a binary liquid.21 In earlier
work she had shown that significant
gravity-induced density gradients may
also develop in binary liquid mixtures.
However, by selecting a mixture of iso-
butyric acid and water, components
closely matched in density, she was able
to show that no noticeable density gradi-
ents developed during the time of the
experiment. (Many of us regretted this
decision because the overpowering smell
of rancid tennis shoes was not conducive
to scientific thought.)

The apparatus used for the experiment
was a magnetic densimeter built by Greer
with the assistance of Moldover and
Hocken. Instruments of this type, first
developed by Jesse Beams at the Uni-
versity of Virginia, measure density by
using a solenoid to levitate a magnetic
buoy in the liquid being studied. The
current required to levitate the buoy is a
measure of the buoyant force, and thus, as
known since the days of Archimedes, of its
mass density. For the coexistence-curve
measurements, the buoy was levitated in
each of the coexisting phases. Figure 6
shows the buoy used by Greer levitated in
a liquid mixture; it is about 1 cm high.

By obtaining a sensitivity of 20 ppm
with this apparatus, Greer produced the
most precise binary coexistence curve to
date. Choosing the volume fraction, the
ratio of the volume of one component to
that of the mixture, as the order parame-
ter, Greer found 0 = 0.328 for this mix-
ture, confirming Balzarini's result. Thus,
she concluded, binary liquids may be
placed in the same universality class as
pure fluids and Ising-like systems, if the
renormalization-group values for the ex-
ponent 0 are accepted. Subsequently,
Donald Jacobs and associates found
similar results for methanol-cyclohex-
ane.

Another interesting point that emerged
from Greer's work concerns the range of
asymptotic behavior. For the system
isobutyric acid-water she found Ising-like
values for /J in a range several degrees
from critical, where pure fluids already
deviate appreciably from Ising-like be-
havior. She then analyzed coexistence
curve data in the system, of carbon di-
sulfide and nitromethane, studied by E.
S. Raja Gopal and his co-workers. Since
these data extend over 60 deg C from
critical, it was possible to study how cor-
rections to scaling set in. Greer showed
that even in this large range, the data were
well represented by an Ising-like scaling
term, if corrections to scaling, as predicted
by Wegner for this universality class7 are
included.

Critical opalescence

That the intensity of scattered light is
a source of information about fluctuations
in near-critical fluids was known to Heike
Kamerlingh Onnes and Willem Keesom
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Light-scattering intensities l(k) in a binary liquid taken at three different scattering angles (different
values of wavenumber k) and at various temperatures above critical collapse onto a single curve
when the ratio l(k)l 1(0) is plotted as a function of k£, where f is the correlation length. The angles
are 40° (squares), 60° (hexagons) and 90° (crosses). Figure 7

in Leiden, who performed a scattering
experiment near the critical point of
ethylene in 1908, even before the classical
papers of Albert Einstein and Marian
Smoluchowski had appeared in the liter-
ature. A theory for critical scattering was
then developed by Leonard Ornstein and
Frits Zernike. They concluded that
long-range fluctuations cause an anisot-
ropy in the intensity of scattered light;
this angular dependence is a measure of
the magnitude of the correlation length £.
Moreover, according to Einstein, the
scattering intensity in the limit of zero
angle, 1(0), is proportional to the com-
pressibility Kr- Hence light (as well as
x-ray and neutron) scattering can enable
us to determine two critical exponents, v
and 7 (see table 1).

In the period between the two world
wars, light-scattering studies near the
critical point of fluids were performed by
a number of investigators, mainly under
the influence of Peter Debye and his
school. The method, however, remained
qualitative until the advent of the laser
and the development of refined electronic
detection techniques. Since 1965 light
scattering has made important contribu-
tions to our knowledge of the critical state
of fluids and fluid mixtures. In a 1972
review, Benjamin Chu22 concluded that

the more reliable data give the exponent
values 7 = 1.23 ± 0.02 and v = 0.63 ± 0.02.
These values agreed with the series-ex-
pansion estimates for the Ising model
within combined error.

This result might have put to rest any
doubts about the validity of the univer-
sality hypothesis for fluid scattering data.
However, the quest for more refined ex-
ponent values, questions about the critical
scattering function, the introduction of
neutron-scattering studies in fluids and
subtle inconsistencies between renor-
malization-group and series-expansion
results for the Ising model all conspired to
keep a number of scientists engaged in
lively controversies for several years after
Chu's review.

In 1960 Green conjectured that the
decay of the correlation function at the
critical point might differ from the l/rd'2

behavior predicted by the classical Orn-
stein-Zernike theory. Fisher then in-
troduced a correction exponent, ?j, such
that, at the critical point, G(r) <* l/rd-2+*.
The value of i) is quite small in three-
dimensional models, typically 0.03. Be-
cause i) is a direct measure of the break-
down of the classical theory for the critical
correlation function, a great deal of ex-
perimental effort has been devoted in
pursuit of this little exponent. Initially

use was made of the Fisher relation, (2 -
ri)i> = 7, which permits deduction of the
value of 7) once values of 7 and v are
known. In view of the small value of rj,
however, obtaining it from v and 7
through the Fisher relation can obviously
not give very accurate results—a different
strategy was needed. A closer look at the
scattering function is necessary to un-
derstand the strategy developed.

Universality of the scattering function

In scattering experiments the intensity
/ is measured as a function of the wave-
number h of the fluctuation. The inten-
sity I(k) is proportional to the structure
factor. The structure factor is a function
of k and of two thermodynamic variables,
such as temperature and either density
(for a pure fluid) or concentration (for a
binary liquid). Near the critical point it
is expected to be a homogeneous function
of its variables. Thus if the scattered
intensity is measured at the critical den-
sity or composition as a function of k and
(T - Tc), the intensity ratio I(k)/I(0)
should become a function of the single
variable k \ AT\~" or k£.

An example of such scaling of the
structure factor is shown in figure 7. The
light-scattering intensities plotted, ob-
tained by Ren Fang Chang and his col-
leagues for a binary liquid at various
temperatures and scattering angles, all
scale onto a single curve. This is the
scattering scaling function g(k^), which,
theory tells us, should be identical for all
systems in this universality class. At
small k the scaling function approaches
the Ornstein-Zernike form 1/(1 + &2£2),
but at large k£ it is expected to behave as
l/(kO2~\ slightly different from the
Ornstein-Zernike prediction l/(&£)2.
Therefore scattering behavior has to be
studied at large values of kt; to deduce
reliable values for r/.

This region is entered by making either
k or £ large. Given the small values of k
accessible in light scattering, the data
must be taken very close to the critical
point so that £ is sufficiently large. Most
fluids, however, are then so strongly op-
alescent that light is scattered more than
once, distorting the value of r). Much
larger k values are accessible with x-ray
and neutron scattering. In fact, neu-
tron-scattering studies, particularly those
conducted at the Brookhaven Laborato-
ries, have been an important source of
information on the critical behavior of
solids. A. Tucciarone and his co-workers
reported rj = 0.055 ± 0.010 for the anti-
ferromagnet RbMnF3, believed to be a
representative of the n = 3 universality
class. For fluids, however, the studies of
Bernard Mozer and his colleagues on
neutron scattering in helium and neon
yielded surprisingly high values for i\.
For the true asymptotic form of the
structure factor to be visible, not only
should k£ be large but k should be small
enough that the short-range structure of
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the fluid is not seen. It is not certain that
this latter condition was met in the x-ray
and neutron studies conducted in fluids
so far.

It therefore became desirable to return
to the longer wavelengths accessible in
light scattering. In pure fluids, light
scattering intensities at large k£ (that is,
at large f) can not be obtained reliably
because of the multiple-scattering prob-
lem. In binary liquids, however, multiple
scattering can be greatly reduced by se-
lecting a mixture in which the refractive
indices of the two components are
matched. Therefore, Chang, Herschel
Burstyn and one of us, Jan Sengers,'23

following a suggestion of Donald Mcln-
tyre, selected a mixture of 3-methylpen-
tane and nitroethane, which has a very
low cross section for light scattering. It
was necessary to increase the precision of
the intensity measurements and to sta-
bilize the intensity of the laser beam.
The intensity of the scattered light was
monitored continuously relative to the
incident light intensity by one and the
same automated photocounting detection
system. A reference beam of roughly the
same intensity as that of the scattered
light was generated from the incident
light with a beam splitter and a reflector;
its intensity was further reduced with a
diffuser cavity. The intensities of the
scattered light and the reference beam
were registered at alternating 100-sec in-
tervals during prolonged periods. The
group was thus able to obtain intensity
data with a precision of 0.25% at k { values
up to 26. Their exponent values agree
within combined error with those cur-
rently predicted by renormalization-
group methods for Ising-like systems,
given in table 2. The scattering function
obtained in this experiment and shown in
figure 7 agrees with that formulated by
Alan Bray for the three-dimensional Ising
model. Thus, this recent experiment has
removed another obstacle to putting the
fluids in the Ising-like universality
class.

Outlook

The question of whether universality
has been "rigorously" proven theoretically
or "definitively" established experimen-
tally is the subject of many debates among
scientists. Nevertheless, the fact that
careful experimentation in continuous
systems such as pure fluids and fluid
mixtures has revealed critical behavior in
close agreement with that predicted by a
theory developed for spin systems on
lattices yields significant support for the
principle of universality.

The renormalization-group method
recently has been extended to the treat-
ment of dynamical critical phenomena.24

With respect to the critical behavior of
dynamical properties, systems can again
be grouped into universality classes.
However, the dynamical universality
classes are somewhat more restricted,

because they also depend on the conser-
vation laws.

Critical behavior is only one example of
the development of long-range fluctua-
tions due to incipient instability. Other
examples are the onset of hydrodynamic
instability such as in the transition from
laminar to turbulent flow; the breakdown
of hydrodynamics in two-dimensional
fluids. The applicability of renormali-
zation-group methods to all these phe-
nomena is under active study.
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