A COURSE ON THE APPLICATION OF GROUP THEORY TO QUANTUM MECHANICS

by Irene V. Schensted 340 pp. paper \$5.00 cloth \$10.00

NEO Press Peaks Island, Maine 04108

Part I (pp 1–69), the original and very popular "Short Course," introduces the student to group theory and how it is applied in quantum mechanics. Part II (pp 70–340) emphasizes use of Young tableaux and idempotents to study the symmetric and unitary groups. Numerous applications in molecular, atomic, nuclear and elementary particle physics.

".. reflects a great deal of knowledge, enthusiasm, and dedication ..."

U. Fano, U. of Chicago

"., excellent use of Young tableaux and operators . . . I plan to recommend it strongly to my class . ."

K. T. Hecht, U. of Michigan . . a remarkable book at a remarkable price

The Publishers

Send Orders and Inquiries to

NEO Press, Box 32A Peaks Island, Maine 04108

Circle No. 46 on Reader Service Card

THE SWISS FEDERAL INSTITUTE OF TECHNOLOGY, LAUSANNE

Microelectronics Laboratory

Applications are invited for positions of

SCIENTIFIC COLLABORATOR

in this newly established laboratory for the following areas:

- Silicon integrated device technology
- Physics and technology of III-V compound materials and devices

A Ph.D. degree or equivalent and experience in one of the above areas are required. The Laboratory's activities will, in part, be pursued in collaboration with outside research centers in the form of joint projects, and prior experience in industry will be an asset.

Knowledge of French is desired after an initial adaptation period.

For further information please write, including a resume, list of publications, description of research experience and interests, and the names of 2 referees, to: Service du Personnel de l'Ecole Polytechnique Fédérale, avenue de Cour 33, 1007 Lausanne/Suisse.

tancies" of any commodity is probably very difficult, to say the least. Perhaps it isn't even worth the effort. The basic problem in such predictions, I believe, lies in understanding what proven reserves actually are, namely "resources that can be economically mined at current prices and with current technology." Who among us would be willing to predict future prices and future technology with confidence?

RICHARD W. VOOK Syracuse University Syracuse, New York

Electron microscopes

6/2/77

Sidney Abrahams and Jerome Cohen (November, page 34) urge the development of high-voltage scanning instruments as beneficial for materials research. They suggest the need for a national facility, or funding for developing techniques, theory and equipment.

It would appear that the National Institutes of Health, at least, agrees with Abrahams and Cohen, for we have been supporting, for the past five years, Elmar Zeitler's construction of a one-angstrom, one-million-volt instrument at the University of Chicago. In view of Abrahams's and Cohen's concern, I am surprised they are not aware of this (or, for that matter, of the fact that the Arizona State microscope is the work of Alex Strojnik and not Marija Strojnik).

ERIC GLASS
National Institutes of Health
3/21/77 Bethesda, Maryland

THE AUTHORS COMMENT: In reply to Eric Glass, we are aware of the developments in high-voltage electron microscopy at Arizona State University and the University of Chicago (see pages 41-42 of our article). We would like to correct our previous statement that the 500 kV electron microscope at Arizona State was built by Marija Strojnik: it was in fact designed and built by her father, Alex Strojnik. Our concern for funding a national high-voltage electron microscope facility is to make available user-oriented instrumentation with adequate services that many US scientists can exploit, rather than individual laboratory instruments. In addition, such a facility should include among its purposes development of the theory, techniques and design necessary for advancing the field. Further comments on the need for a national facility may be found in the article by J. M. Cowley and S. Iijima in the March issue (page 32).

S. C. ABRAHAMS

Bell Laboratories

Murray Hill, N.J.

J. B. COHEN

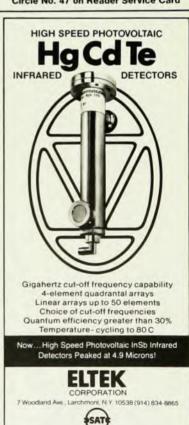
Northwestern University

Evanston, Illinois

3/25/77

BROADBAND PHOTON COUNTING

TESTED WITH BROADBAND, HIGH GAIN PHOTON COUNTING SYSTEMS, these high performance PMT housings provide — Electrostatic Shielding at cathode potential, Magnetic Shielding (.040" thick high permeability material) extending ½ cathode diameter in front of photo cathode. Removable Universal Front Mounting Flange allows interchange with most commercial housings.


PR-1400RF fits 2" & 1½" diam. PMTs. PR-1401RF fits 1½" and smaller tubes. Also, PR-1402RF for side window tubes (not shown).

Call (617) 774-3250 or write:

Products for Research, Inc.

78 Holten Street • Danvers, Mass. 01923 CABLE: PHOTOCOOL TELEX: 94-0287

Circle No. 47 on Reader Service Card

Circle No. 48 on Reader Service Card