

letters

1968 by E. Migneco and J. P. Theobald⁴ demonstrated the same dramatic grouping of resonance clusters in the neutron-induced fission of Pu^{240} . Subsequently, the effect was confirmed further in other non-fissile nuclei, such as U^{234} and U^{238} .

The Np^{237} results, of which we were well aware but had accidentally transposed with the later Pu^{240} findings, should have been accorded their deserved precedence, and due credit should have been given to the above Saclay group. As Andre Michaudon is currently preparing an abridged version of the above ICINN Conference review paper for publication in PHYSICS TODAY, we hope that this timely correction may set the matter straight and apologize for any misconceptions that may have arisen.

References

1. A. Michaudon, "Neutrons and Fission," on pages 641-724 of Proceedings of the International Conference on the Interactions of Neutrons with Nuclei, Lowell, 6-9 July 1976, edited by E. Sheldon (U.S. ERDA Report CONF-760715-P1 & P2, 1976).
2. A. Michaudon, "Nuclear Fission," in Advances in Nuclear Physics, edited by M. Baranger and E. Vogt, Vol. 6, pages 1-217 (Plenum Press, New York and London, 1973); see pages 74-83.
3. "New Insight is Offered into the Fission Process," Search and Discovery, PHYSICS TODAY, Feb. 1969, pages 64-67.
4. E. Migneco, J. P. Theobald, Nucl. Phys. A112, 603 (1968).

HERMAN FESHBACH
Massachusetts Institute of Technology
Cambridge, Mass.
ERIC SHELDON
University of Lowell
Lowell, Mass.

7/11/77

More physics in poetry

Further to the remarks of H. A. Klein (January, page 84) and V. F. Weisskopf (June 1976, page 23), your readers may be interested in a remarkable (if unwitting) anticipation of special relativity in Wagner's "Parsifal." In Act I, as Parsifal is led through a forest to the Hall of the Grail, he sings¹

"Ich schreite kaum—doch wähn' ich
mich schon weit."

To which Gurnemanz replies:

"Du siehst, mein Sohn, zum Raum
wird hier die Zeit."

A literal translation is

"I pace hardly at all, nevertheless I feel
I have come far already."

"You see, my son, that here time
transforms into space."

This is not the "official" translation,¹ which is modified by the constraints of rhyme, meter and dramatic singing in English.

Why Wagner chose this phraseology is not at all clear. The idea does not appear

in his medieval sources, and he gives no explanation in his own writings. The discussion by Paul Bekker,² although complicated, does explain what Wagner probably meant, although there is no clear agreement among the experts. The actual choice of words again may have been dictated by poetic requirements.

I find no indication in Einstein's biographies, nor in talking with several of his biographers and colleagues, that he was ever aware of these unusual lines. In fact, Einstein's tastes in music ran to more classic composers, and he apparently showed no interest at all in Wagner. Banesh Hoffman relates one story: he invited Einstein to join him at a performance of "Tristan and Isolde." Einstein declined, saying "They have died too often."

This passage in "Parsifal" was first called to my attention in a *son et lumiere* lecture by Edwin Land at John Hopkins' Rowland-Wood Symposium on 21 November 1975.

References

1. "Authentic Librettos of the Wagner Operas," Crown, New York (1938); page 445.
2. Bekker, "Richard Wagner, His Life in His Work," W. W. Norton, New York (1931); page 491.

ROLF M. SINCLAIR
National Science Foundation
6/13/77

Washington, D.C.

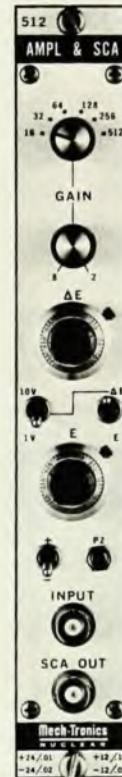
Origin of solar system

I am writing in reference to Grace Spruch's news story in your May issue (page 17) on the origin of the solar system directly from a supernova. I would like to point out that many years ago Fred Hoyle suggested that a solar system might arise from a binary star in which one of the components becomes a nova.¹ In 1971, I published my own theory of formation of solar systems from fragments of a supernova shell.² More recently, I have written a concise review of this model and its extension to the formation of galaxies.³

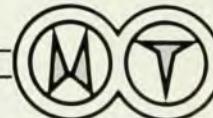
References

1. F. Hoyle, Mon. Nat. Roy. Astron. Soc. 105, 175 (1945).
2. W. K. Brown, Icarus 15, 120 (1971).
3. W. K. Brown, L.A.S.L. report LA-5364 (1974).

WILBUR K. BROWN
Los Alamos Scientific Laboratory
6/6/77


Los Alamos, New Mexico

Optics today


In his review of our text, *Contemporary Optics for Scientists and Engineers* (May, page 74), Charles Frahm raised

continued on page 82

AMPLIFIER-SCA

Model 512
\$425.00

- 0.8 usec Gaussian Shaping, Gain of 1024
- Integral or Window Operation
- Wide (100%) or Narrow (10%) Window Modes
- High Stability Bias/Baseline Restorer Circuits . . . Designed for High Resolution Spectroscopy

Mech-Tronics

NUCLEAR

430A Kay Ave., Addison, IL 60101

For more information
WRITE OR CALL COLLECT
(312) 543-9304

Circle No. 14 on Reader Service Card

Thermionics presents

a 2" evaporator with 15 years' experience

Over 1000 of these versatile, portable, easy to use TLI-10 systems are now at work in electron microscopy, vacuum evaporation research, thin film testing, semiconductor production and many more applications requiring a limited scale, high quality vacuum system.

- 3 models: automatic valving or switch operated
- Direct equivalent to Varian VE-10
- Exclusive TLI maximum conductance, electrically driven valves
- 3 minute pumpdown to 1×10^{-4} torr (10" jar or equal)
- Low, 10^{-4} torr range
- Air cooled diffusion pump
- Mechanical pump and motor vibration protected
- Needs only 16" x 27" floor space, uses 110 V outlet
- Rubber casters for portability.

For ease of operation and versatility, there's nothing else like the TLI-10 anywhere near its price range. For full details, call or write.

**thermionics
laboratory, inc.**

22815 Sutro Street,
P.O. Box 3711
Hayward, CA 94544
(415) 538-3304

Circle No. 45 on Reader Service Card

letters

continued from page 15

several questions about what subject matter should be included in an undergraduate course on optics. We think that these questions have a broad meaning for the physics community that transcends interest in a book review and would like to comment on them.

Numerous surveys conducted by the AIP and others in recent years have shown that there are fewer opportunities along traditional career paths today than in the past. It follows that if the present generation of physicists continues to be trained according to traditional procedures, it will be trained for increasingly non-existent careers.

A realization of this problem has prompted a great deal of discussion of alternate careers in applied areas. We submit that if physicists are to pursue alternate careers the nature of their education and training must be changed so as to enhance the prospects of their successful pursuit of these alternate paths. This cannot be done as an afterthought while keeping the structure and content of our courses unchanged.

There is an adage to the effect that "Generals spend time between wars learning to fight the past war better." What we must avoid is physicists spending time between technological cycles learning to contribute better to the past cycle.

The reviewer concluded that our book would make a fine text in an applied-optics course, but that a number of topics

found in a traditional optics course were not covered. That is precisely the point! A book or course cannot include all of the traditional material and have room for modern applications other than by adding a few footnotes here and there or a brief section at the end. To meet today's needs there should be an emphasis on newer topics.

In addition to the proper selection and emphasis of topics the manner of presenting the material is important. We think that optics should not be taught by the *deductive method*—writing down Maxwell's equations and deriving expressions from them. Students tend to become immersed in vector algebra and do not learn how to apply their knowledge. The subject should be taught by the *inductive method*—the key experiments that form the basis of what we know should be reviewed. The fundamental properties of light waves and their interaction with matter should be built up one by one by reference to phenomena. This approach, particularly when associated with a laboratory, helps students develop an intuition for phenomena and this makes it easier for them to apply their knowledge to real-world problems.

In today's world, not only courses in applied optics, but also the standard undergraduate course in optics should be taught along the lines outlined above.

RICHARD A. PHILLIPS

Foster Grant Co., Inc.
Leominster, Massachusetts

ALLEN NUSSBAUM
University of Minnesota
Minneapolis, Minnesota

7/25/77

Commodity reserves

Recent letters have discussed known world reserves of several important energy-related commodities such as coal and uranium. The discussions often center on how long it will take for such reserves to be "used up," given various sets of assumptions. In this respect I thought your readers might be interested in the following table taken from the May 1977

issue of the Morgan Guaranty Survey.

This table shows that the known reserves of all but one of the eleven commodities listed actually increased in the period from 1950 to 1970, some by extraordinary amounts. Unfortunately coal and uranium are not listed. While it would be rash to conclude from this table that the more such commodities are used up, the more we still have, I think it is fair to say that predicting the "life expect-

Known world reserves—1950-1970

	1950 Thousands of metric tons	1970 Thousands of metric tons	Percent change
Iron	19 000 000	251 000 000	1 221
Manganese	500 000	635 000	27
Chromite	100 000	755 000	675
Tungsten	1 903	1 328	-30
Copper	100 000	279 000	179
Lead	40 000	86 000	115
Zinc	70 000	113 000	61
Tin	6 000	6 600	10
Bauxite	1 400 000	5 300 000	279
Potash	5 000 000	118 000 000	2 360
Phosphates	26 000 000	1 178 000 000	4 430