HAVE YOU

Something to sell?
... or to exchange?
A job to offer?
Yourself to place?

in PHYSICS.

today

RATES: 18¢ per word, minimum charge \$5.00 payable in advance; 68 letters and spaces per line. Box number service add \$1.25. Closing date first of preceding month. Display advertisers will be billed monthly. There is no agency discount. For display ads the rates per column inch are:

Single insertion \$16.00 per inch Three insertions in one year \$14.50 per inch Six insertions in one year \$13.00 per inch Twelve insertions in one year \$10.00 per inch

Address Physics Today, Classified Ad Department, 57 East 55th St., New York 22, N.Y.

POSITIONS FOR

Physicists with advanced degrees and experience in varied fields of Industry, including Technical Sales, Television. Also for Chemists and Chemical Engineers.

CONFIDENTIAL SERVICE

Send or bring 3 Resumes and include snapshots (if out-of-town) to

POSITION SECURING BUREAU
Agency Established 1922

45 John Street

New York 7, N. Y.

Five Sizes: Maximum protection and visibility for samples, specimens, and other objects easily lost. Especially useful for keeping small parts of instruments in order. You will find many uses for these unique transparent boxes.

Write for Leaflet TR-PT

R. P. CARGILLE

116 LIBERTY ST.

NEW YORK 6, N. Y.

JOURNAL NOTES Continued from preceding page

To date, this camera has been used successfully to photograph the shock waves from spherical charges at rates exceeding 10⁸ frames per second.

M.S.

A 100,000,000 Frame per Second Camera, By M. Sultanoff, Rev. Sci. Inst., 21: 653, July, 1950.

New Pressure Gage

This gage was developed to measure air pressures in the upper atmosphere when mounted on a high speed rocket. It has been used in the Viking and V-2 type rockets over the White Sands Proving Ground in New Mexico and significant data up to 50 miles have been obtained, where the pressure is approximately one hundred-thousandths of the atmospheric pressure at sea level. During May 1950 six of the gages were flown on a Viking rocket launched from the USS NORTON SOUND near the equator. This rocket reached an altitude of 106 miles above sea level.

With a small heated wire inside a bellows which is moved by an electric motor, pressures from atmospheric down to 10-5 millimeter of mercury have been detected, the latter pressure being a practical laboratory limit because of the effects of microphonics and gassing of the bellows. Theory indicates that a signal at 10-7 millimeter of mercury would be above the thermal noise in the detecting hot wire. This new gage works on the principle that an alternating current electrical signal can be obtained from a Pirani type pressure gage by cyclically changing the pressure at a given frequency. This signal is a function only of the average pressure and the supply voltage and is essentially independent of the ambient temperature, which is the principal source of error when the Pirani gage is used in rockets. This same principle of cyclically changing the pressure can be used with other pressure detectors to eliminate sources of error, if these sources of error can be held constant while the pressure is changed in a known way.

The chief problem remaining is to develop techniques of gage construction such that gassing and microphonic troubles will be eliminated. If this were accomplished, the gage could be used in a rocket to measure pressures at altitudes up to 80 miles where the estimated pressure is about 10-5 millimeter of mercury. Measurements at these altitudes and higher are extremely complicated because of the copious quantities of gas coming out of the rocket, and also because of the pitching and the yawing of the rocket.

From the data obtained from this type of gage, suitably mounted in a rocket, one is able to obtain the ambient pressure, density, and temperature of the upper atmosphere. Its extremely wide range and its ruggedness makes it particularly useful to scientists engaged in upper atmosphere research.

H.E.L.

A New Vacuum Gage. By R. Havens, R. Koll, and H. E. LaGow. Rev. Sci. Inst., 21: 596, July, 1950.