

The Crying of Bats

Biologists have known for some time that bats guide their flight through darkness by means of special cries which are above the frequency range of human hearing. A recent detailed acoustic analysis of these ultrasonic sounds shows many similarities to radar and sonar systems. The sound is emitted in pulses lasting only about two milliseconds. Pulse repetition rates may be at least as high as 50 per second; but there is a relatively long, silent period during which the bat can listen for echoes. The frequency of the sound varies during each pulse, starting typically at about 80 kilocycles per second and dropping to 40 at the end of the brief burst of sound. Since the pulses are undergoing this frequency modulation there is no single frequency which can properly be assigned to the cry.

For the species studied to date the maximum energy is contained in the middle of the pulse where the frequency is between 50 and 60 kilocycles. The sound pressures developed are surprisingly high: a microphone to centimeters in front of a bat's mouth will often record sound pressures of 60 dynes per square centimeter at 50 kilocycles, or 109 decibels on the customary scale of sound level. Such sound levels are characteristic of the cabins of very noisy combat airplanes; yet the bat produces this sound intensity by means of a specialized larynx which is only about five millimeters in its largest dimension. Ordinarily one notices no sound as a bat flies past emitting these ultrasonic pulses, but in a very quiet room a faint click may be audible. This results from the presence of a very low amplitude component in the pulse, having a frequency of roughly 10 kilocycles. This 10 kc component has only about one thousandth of the amplitude of the 50 kc waves; yet because the latter are so intense, the weak component is the only audible portion of the pulse.

The entire process of orientation by means of echoes is worthy of more attention than it has yet received in view of its probable usefulness to blind men, its analogies to instrumental developments allied to radar and sonar, and its highly perfected development in bats.

D.R.G.

Measurements of the Ultrasonic Cries of Bats. By Donald R. Griffin. J. Acous. Soc. Am., 22: 247, March, 1950.

Advertiser Killer

This article describes a simple electronic device for protecting the radio listener from the interminable razzle-dazzle of radio advertising. At a hand-clap, or other sharp sound, the radio becomes silent and remains so for a definite predetermined time interval. The circuit is described in detail, together with its operation and the controls necessary to make it function as a useful ever ready adjunct to a radio. The sound signal enters a collecting

horn fitted to a carbon microphone whose output is amplified and fed to the grid of a gas triode acting as trigger to a time-delay circuit. By means of a relay, the time-delay circuit merely opens the loud speaker line and keeps it open for the pre-set time interval.

New Application: Electronic Time-Delay Circuit. By I. Clyde Cornog. Am. J. Phys., 18: 62, February, 1950.

Deuteron Disintegration

One of the central problems of nuclear physics has been the determination of the potential acting between two nucleons in the state of zero relative angular momentum (S state). This potential determines almost entirely the characteristics of nuclear two body systems at low energies. On the other hand, it has long been thought that the low-energy experimental data does not determine the potential completely.

In a previous paper (H. A. Bethe, Phys. Rev. 76: 38, July, 1949) it was shown that S-state scattering data (including the energies of bound states, if any) can be analyzed exactly in terms of two parameters. One of these parameters describes the system at a fixed energy: e.g., it may refer to the scattering cross section at zero energy. The other parameter is called the "effective range" of the potential; it would be zero if the two nucleons interacted only at a point, and is in general larger for potentials of longer range. Although the effective range is not identically independent of the energy, it was shown in the earlier paper that it is almost so for low energies and for any likely potential. The theory was found to fit the neutron-proton and proton-proton scattering data.

In the present paper it is shown that photo-electric and photo-magnetic disintegration of the deuteron depend to good accuracy only on the binding energies of the deuteron (the binding energy is fictitious in the 'S state) and on the effective ranges in the two spin states 'S and 'S. The low energy data (in their present accuracy) therefore give only the strength and range of the S-state potential, and give nothing further about its shape. However, it is noteworthy that a "longtailed" potential, such as the Yukawa meson-theoretic potential, is required by the data if one postulates that the neutron-proton and proton-proton potentials have the same shape and range in the 'S state.

The Effective Range of Nuclear Forces. II. Photo-Disintegration of the Deuteron. By H. A. Bethe and Conrad Longmire. Phys. Rev., 77: 647, March 1, 1950.

Fine Lines in Soot

During an investigation of the friction of rolling it was desirable to have a simple and direct method for recording frictional data. The old method of recording with a stylus in soot on glass was tried, but the piling up of soot on the stylus point seldom produces lines narrower than o.t millimeter. If, however, a hydrocarbon such as kerosene is introduced into the soot by capillary action the soot is more firmly bonded to the glass base and a

sharpened metal stylus can now make lines that are no wider than 5 to 10 microns. Stylus loads from 1 to 10 milligrams, depending upon soot conditions, are ample. The completed records, lacquered for permanency, are used to make photographic prints by direct projection. For the present purpose, lines finer than those quoted above have been unnecessary, but it is believed that lines no wider than one micron can be easily produced.

Large quantities of data can be stored in a small space with this method. In the present work 5 to 20 complicated friction records are put on a one-by-three inch glass slide. The high resolution also makes possible the direct and accurate recording of motions of only a few thousandths of an inch while the combination of high resolution and small force open up possibilities for high frequency mechanical recording.

K.R.E.

High Resolution Recording with Soot. By Kenneth R. Eldredge. Rev. Sci. Inst., 21: 199, March, 1950.

Nonastigmatic

Cylinders and paraboloids, which, like the sphere, are surfaces of the second degree, were the only aspherical surfaces used for lenses and mirrors until the Schmidt corrector plate, a surface of higher degree, was successfully introduced into optics. Optical design of the future may find it most profitable to apply other high-degree surfaces for various purposes, if grinding difficulties can be overcome. As an example of the advantages of applying aspherical surfaces of higher degree, the properties of the torus grating have been studied theoretically.

The torus is a surface of the fourth degree and is generated by revolving a circle about a straight line lying in the plane of the circle. The torus grating (defined as an equatorial calotte of a right circular torus bearing a grating ruling on its concave side) is meant to eliminate astigmatism, which is the chief image deficiency of the spherical grating. The latter is outstanding in that it can produce and image a spectrum by a single katoptric process; yet, its astigmatism is disturbingly large, occasionally amounting to a few thousandths of the grating's radius. In contrast to this, the torus grating eliminates astigmatism entirely for two points in the spectrum, whereas astigmatism at both sides of these points is very small, giving rise to "quasi-stigmatic" ranges in the torus grating spectrum.

At the same time, other image deficiencies of the torus grating compare favorably to the spherical grating. The chief advantage of the torus grating lies in a considerable gain in spectral intensity and in the over-all usefulness of stigmatic spectral images.

H.H.

The Torus Grating. By Heinz Haber. J. Opt. Soc. Am., 40: 150, March, 1950.

City Noise

A survey of noise in the city of Chicago has been in progress over the past two years under the sponsorship of the Armour Research Foundation of Illinois Institute of Technology, in cooperation with the Greater Chicago Noise Reduction Council. Foundation personnel have realized for a long time that the problem of noise is becoming more and more acute. Not only has there been a general feeling of futility among the public with respect to noise reduction, but engineers have been at a loss for means to measure the objectionable degree of noise reliably, simply, and rapidly. With this as the problem, physicists at the Foundation, having a wide background in acoustical measurements, felt that as a public service and to create interest in the problem a program should be undertaken to study the most common noises encountered by the public in this city.

In making such a study it was felt that measurement compromises would be required in order to arrive at a technique for evaluating noise. It was believed, however, that a workable method could be developed that would be of interest to all who were concerned with such noise conditions and would constitute a basis for tolerable levels to be used in writing or revising anti-noise legislation.

Earlier studies of city noise have been made by a number of workers. Far-reaching and beneficial results were obtained by a study of noise in New York City in 1930. The program covered by the present work, however, is believed to be the most extensive in which a wide survey of octave-band data is being made. The program includes investigation of noise from transportation vehicles and noise in traffic lanes, residential areas, and industrial zones.

The important phase of the work having to do with the technique of evaluating such noises concerns the levels which are indicated by standard sound measuring equipment. It is known, of course, that levels in the various octave bands are of more value in describing the noise than the single over-all level. Many acoustical measurements of mechanical noises have indicated the unreliability of this single level to represent the objectionable degree of the noise. In this program such octave-band levels have been studied and compared with the over-all levels.

The phase concerning noise of vehicles has been completed. Measurements were made both inside and outside of vehicles. Inside over-all measurements (flat network) ranged from 85 decibels in a new "L" car to 95 in subway cars. In the 400-800 cycles per second band, measurements ranged from 68 decibels in an automobile to 91 in subway cars. Outside of and close to vehicles, the over-all levels ranged from 78 decibels for automobiles to 94 for subway trains. Observations in the 400-800 cycles per second band ranged from 66 decibels for automobiles to 87 for subway trains.

The results of vehicle noise measurements are interesting in a number of ways. For instance, the reduction of noise in changing from outmoded to modern equipment is readily observable. This is especially true in the case of old and new street and "L" cars.

The survey is continuing with measurements in the remaining phases mentioned above. When analysis of these data is completed, the results will be made available as in the present phase.

G.L.B.

Levels of Spectra of Transportation Vehicle Noise. By G. L. Bonvallet. J. Acous. Soc. Am., 22: 201, March, 1950.