abstracts from 22 of the Soviet group.

The awareness, although not recent, has grown rapidly in the last few years that a number of structures in apparently diverse intellectual disciplines appear to be quite similar, and that if an advance is made in one area, it will be useful in another. The present book provides a group of interesting contributions that help to highlight these similarities, or at least to suggest them; as such, they represent an amelioration of the often too rigid interdisciplinary barriers. It should present a welcome starting point for the mathematically inclined in the physical sciences who enjoy utilizing their skills in unfamiliar areas. One is apt to find, however, that unsolved problems in one area are also unsolved in others.

> FREDERICK W. CUMMINGS University of California Riverside

Astrophysics of Gaseous Nebulae

D. E. Osterbrock 251 pp. W. H. Freeman, San Francisco, 1974. \$17.00

In preparing this book, Don Osterbrock has made a fresh approach to the problems associated with gaseous nebulae. We astrophysicists can reorganize our files of dog-eared Xerox copies and reprints of essential papers on the spectra of gaseous nebulae and follow his organizational scheme.

The author starts out with the basic concept of a pure hydrogen cloud and posits a totally photoionized hydrogen sphere, or HII region. Chapter by chapter, he builds upon his simple physical model, adding singly and doubly ionized helium, then ionized heavier elements in turn. He discusses thermal equilibrium, and the emission spectrum-with its dependence on density, temperature and abundances-is calculated. Theory is compared with observations, and the effects of internal dynamics are discussed. Consequences of dust in the ionized nebula are also considered.

Gaseous nebulae are extremely varied in shape, size, color and even origin, yet their characteristic emission-line spectra tie them together into a field of most interesting astrophysics. However, it is still a challenge to understand these spectra totally, though they seem so simple. Very bright green lines of doubly ionized oxygen, deep-blue lines of singly ionized oxygen, and deep red neutral-oxygen, singly ionized nitrogen and sulfur lines usually dominate the nebular spectra, but all lines are due to forbidden transitions that cannot occur in more dense laboratory vacuums.

Trifid Nebula. Photo by T. R. Gull records hydrogen-alpha and nitrogen emission lines.

Explaining the basic physics of gaseous nebulae was a major challenge to astrophysicists in the first half of this As the physical processes century. have become better understood, the astrophysics of gaseous nebulae has in turn been put to work as an important tool in studying galactic structure by extinction measurements of hydrogenic lines, in measuring abundances of the various elements and in understanding the ultraviolet spectral energy distribution of very hot stars that ionize diffuse and planetary nebulae. Analysis of the emission spectra of supernova remnants has aided researchers to confirm that the remnants are being driven by a central source expanding at shock velocities into the surrounding neutral medium. Today astronomers use theoretical concepts developed over the years to determine electron temperatures and densities and elemental abundances of gaseous nebulae. Observations indicate possible abundance differences between ionized-hydrogen regions with increasing distance from the nuclei of spiral galaxies. The conditions within quasars and nuclei of emission galaxies are studied using emission-line spectra. Even though the sizes and mechanisms of excitation are very different, it is astounding to realize that the spectra of some high-excitation planetary nebulae and the nuclei of Seyfert galaxies have many similarities.

The approach of this book is unique. Osterbrock presents just what he promises to discuss: the astrophysics of gaseous nebulae. Diversions-such as pretty color pictures of the heavens or totally mathematical discussions-are not to be found. The book treats astrophysics in an informal but logical, straightforward manner. Aside from the usual typographical errors that always occur in first editions, the book is well prepared. Particularly attractive is the outline summary at the end of each chapter, with references to the source papers summarized in the text. This feature makes the book a useful guide not only for the graduate stu-

Circle No. 41 on Reader Service Card

dent's first reading on the subject, but also for the astronomer who wants to refer back to original sources.

This book is an excellent summary of the astrophysics of HII regions and planetary nebulae. However, it should be pointed out that the astrophysics of supernova remnants is not completely covered in this book; nonthermal or synchrotron radiation is not discussed. I hope that a later edition or a second volume will more fully depict this important group of gaseous nebulae.

In addition to astronomers, many physicists may enjoy referring to this volume, especially those involved in classroom instruction or those interested in seeing the application of fundamental classical and quantum physics to a nearly ideal medium.

THEODORE R. GULL Lockheed Electronics Co Houston, Texas

Symmetry Principles in Solid State and Molecular Physics

M. Lax 499 pp. Wiley, New York, 1974. \$19.50

Rotational invariance, translational periodicity, time-reversal, and other symmetry principles play a prominent role in many branches of theoretical physics and chemistry. Accordingly, a knowledge of how to use symmetry in theoretical analysis is an important ingredient in a scientific education. Many graduate students have brief encounters with symmetry (group theory) in quantummechanics and physical-chemistry courses, but very few gain a working knowledge of symmetry analysis without devoting considerable additional effort to this subject. Increasingly, students are taking specialized courses in group theory, which stress physical and chemical applications rather than the underlying mathematical foundation. Melvin Lax's new book is eminently suited for such courses in applied group theory.

One of the distinctive features of the book is that it begins by stating and illustrating rather than proving the fundamental theorems of group theory. In this way the student gets down to the subject directly. After carefully discussing the relationship between group theory and quantum (or classical) mechanics, Lax treats the most important features of the full rotation group, crystallographic point groups, space groups and their associated double groups. Most of the book is devoted to instructive problems in a number of fields, including crystal field theory, macroscopic-crystal tensors, molecular vibrations, energy-band theory, lattice dynamics, and molecular-orbital theory.

Another distinctive feature-and one of its great strengths-is that the book examines many group-theoretical problems that have arisen in recent research as well as many traditional problems. The book also features detailed treatments of space groups and time-reversal symmetry. These accounts are among the best available anywhere. Lax presents full-scale symmetry analyses of the vibrations of the ammonia molecule and the diamond crystal. These and other in-depth discussions should prove particularly valuable to the serious student. The book also contains many excellent problems and reference material as well.

After spending many years at Bell Laboratories, where the early drafts of this book were written, Lax joined the City College of the City University of New York as Distinguished Professor of Physics. He has made many important contributions to theoretical physics, not the least of which is this outstanding book. Many sections are based on original research by the author, and most are illuminated by his mathematical and physical insight. I am happy to recommend the book to students of physics and chemistry as well as to research workers in these and related fields. This is one of the best books presently available on the physical and chemical applications of group theory.

FRANK HERMAN

IBM San Jose Research Laboratories

California

The Wave Equation on a Curved Space-Time

F. G. Friedlander. 282 pp. Cambridge U. P., New York, 1976. \$39.50

In the last few decades, new methods have been developed in the theory of partial differential equations, methods based on the theory of generalized functions and, in particular, on the theory of distributions. The theory of distributions is not merely a convenient tool; it also enlarges the scope of the theory of partial differential equations in a useful way both mathematically and physically. The Wave Equation on a Curved Space-Time by F. G. Friedlander is an attempt to present to physicists the classical theory of the wave equation, developed mainly by Jacques Hadamard and Frigyes Riesz, using the modern language of distributions and differential geometry.

The first part of the book reviews differential geometry, the theory of distributions, and some basic aspects of characteristics and bicharacteristics of the wave equation. The second part is the main body of the book, which treats the general construction of fundamental solutions of the scalar wave equation and their application to the Cauchy problem. In the remainder, generalizations of the theory to tensor wave equations in a space-time and to the corresponding equations in space-times of arbitrary dimension are developed.

The theory presented is local, because the classical theory of Hadamard and Riesz is constructive, and this book simply attempts to state it in a modern language. Also, the abstract approach involving Sobolev spaces is not touched. Hence this book might be disappointing for a physicist who wants a broad exposition of the modern theory of partial differential equations. However, Friedlander treats his rather narrowly chosen topic in an intensive, well organized way. One unsatisfactory point is that he does not include an example to illustrate the main theory of the book. As the author points out, there are very few examples. Nevertheless one could find, I think, some good illustration that would make this book much more attractive to physicists.

The main audience for the book will be general relativists, who often encounter problems involving basic aspects of the wave equation on a curved space-time. One instance is the Cauchy problem for Einstein's equations: how does one specify data on a space-like hypersurface or on a characteristic half-hypercone in such a way that at later times a solution of Einstein's equations can be found that is consistent with the given data?

On the whole, I would say that this is a well written book and that it clarifies the basic mathematical structure of the wave equation on a curved space-time. Friedlander's volume will be useful to graduate students in general relativity who want a deeper understanding of the Cauchy problem for Einstein's equations.

> PONG SOO JANG Syracuse University New York

Solar-Energy Thermal Processes

J. A. Duffie, W. A. Beckman 386 pp. Wiley, New York, 1974. \$16.95

Given the current interest in the utilization of solar energy, this timely book meets an important need. According to the authors the purpose of this volume is to summarize the state of knowledge in the design of uses for solar thermal processes and to present this summary in a form that will be useful to engineers. Actually, the coverage in Solar-Energy Thermal Processes is restricted to thermal processes in which solar radiation is absorbed by a solid surface in