THIN FILMS, SURFACES, INTERFACES & VACUUM SCIENCE & TECHNOLOGY NATIONAL A.V.S. SYMPOSIUM

Vacuum, Thin Film & Surface Science & Technology subject areas will all be strongly represented at the AVS National Symposium, the Palmer House, Chicago, September 21–24, 1976. Sessions now scheduled, at which some 250 papers are expected will include:

- . Film Deposition Techniques
- Interaction of Electrons, Ions and Atoms with Surfaces
- Fusion Reactor Wall Desorption & Pumping Problems
- . Thin Films Related to Solar Energy
- Vacuum Technology
- Catalysis
- Chemisorption & Adsorption
- Maintenance & Leak Detection Seminar
- Depth Profiling
- Electronic & Electrochemical Properties of Surfaces
- . Defects and Microstructures in Thin Films
- Vacuum Metallurgy
- Isotope Separation
- . Photoemission from Surfaces
- Manufacturers' New Products Seminar
- Workshop on Sputtering Technology

THE VACUUM/THIN FILMS SHOW held in conjunction with the Symposium should prove particularly attractive to users of cryo equipment, AUGER, LEED & ESCA year, deposition sources monitors & coaters, vacuum pumps, components & systems, etc.

Abstract deadline 5/24/76

John Vossen, Program Chairman RCA Labs Princeton, N.J. 08540 (609) 452-2717 **Exhibit space**

Edward P. Greeley American Institute of Physics 335 E. 45th Street New York, New York (212) 685-1940

obituaries

Observatories in 1960. In 1961 he began a second career as a research astronomer with the Radio Astronomy Laboratory of the University of California at Berkeley. In 1961 he was awarded the Bruce Medal of the Astronomical Society of the Pacific. In 1965 he retired again at the mandatory age of 70. Minkowski continued as astronomer emeritus in the astronomy department until his death. In 1968 he received an honorary doctorate from the University of California in recognition of his outstanding career.

In the scientific community Minkowski stands out as a scholar of high international reputation and prestige. Among those fortunate to have known him as an associate, he will always be remembered as an exciting stimulus to staff and students, an invaluable source of knowledge and experience, and an open and helpful critic of ideas and projects.

LEONARD V. KUHI University of California, Berkeley

Sir Charles Seymour Wright

Sir Charles Wright died 1 November at his home in Victoria, British Columbia. He was born in Toronto and educated in physics at the University of Toronto and Cambridge University. In addition to his scientific achievements during both World Wars, Wright accompanied Scott on the ill-fated Antarctic polar expedition of 1911–1913: Wright, the last to see Scott alive at the head of the Beardmore Glacier, subsequently led the party to the camp of those who reached the pole.

Soon after returning from the Antarctic, Wright became involved in the First World War and applied the principles of physics to military problems. As an officer of the Royal Engineers, he devised a system of command in trench warfare by using the then infant wireless. Later Wright worked on magnetic methods of submarine detection.

Wright joined the scientific research department of the British Admiralty after the war. He served until 1947, his last assignment being chief of the Royal Navy Scientific Service. His achievements in radar and related fields brought him a host of honors, including a knighthood in 1947. Retiring from the Royal Navy Scientific Service, Wright continued to serve as advisor to the Admiral in the British Joint Service Mission to Washington until 1951, when he received the Medal of Freedom

Wright served three years as director of the marine physical laboratory of the Scripps Institution of Oceanography,

SERIES M CAPACITORS

	SERIES M			CA	CAPACI		TORS		
Catalog No.	Cap µF	Volt, KV	Energy Content J	(ie	L Size n.l	Weight Ibs.	J/Ib.	J/in.3	
34001	5	2.0	10	1.5	3.5	6	16.7	1.62	
34002	10	2.0	20	2.0	3.5	.9	22.2	1.81	
34003	20	2.0	40	2.69	3.5	1.4	28.6	2.01	
34004	25	2.0	50	2.0	6.5	1.5	33.3	2.5	
34005	30	2.0	60	3.3	3.5	2.1	28.6	2.0	
34006	40	2.0	80	2.69	6.5	2.3	34.8	2.1	
34007	50	2.0	100	4.0	3.5	3.0	33 3	2.2	
34008	70	2.0	140	3.3	6.5	3.5	40.0	2.5	
34009	100	2.0	200	4	6.5	5.0	40.0	2.5	
34010	3.0	3.0	13.5	1.5	3.5	.6	22.5	2.2	
34011	6.0	3.0	27	2.0	3.5	.9	30	2.45	
34012	12.0	3.0	54	2.69	3.5	1.4	38.6	2.7	
34013	18.0	3.0	81	3.3	3.5	2.1	38.6	2.7	
34014	25.0	3,0	112.5	2.69	6.5	2.3	49	3.0	
34015	40.0	3.0	180	3.31	6.5	3.5	51.4	3.2	
34016	60.0	3.0	270	4.0	6.5	5.0	54	3.3	
34017	70.0	4.0	560	5.0	6.5	9.3	60	4.2	
34018	100.0	4.0	800	6	6.5	12.5	64	4.2	
34019	2	5	25	1.5	3.5	.6	42	4.0	
34020	5	5	60	2	3.5	.9	67	5.4	
34021	8	5	100	2 69	3.5	1.4	72	5.1	
34022	10	5	125	2	6.5	1.5	83	6.1	
34023	15	5	190	3.3	3.5	2,1	90	6.3	
34024	18	5	225	2.69	6.5	2.3	98	6.1	
34025	20	5	250	4	3.5	3.0	83	5.7	
34026	35	5	440	3.3	6.5	3.5	125	7.8	
34027	40	5	500	4	6.5	5.0	100	6.1	
34028	1.2	6	20	1.5	3.5	.6	34	3.2	
34029	3	6	55	2	3.5	9	61	5.0	
34030	6.5	6	120	2	6.5	1.5	80	5.9	
34031	10	6	180	2.69	6.5	2.3	78	4.9	
34032	13.5	6	243	4	3.5	3.0	81	6.1	
34033	20	6	360	3.3	6,5	3,5	100	6.4	
34034	25	6	450	4	6.5	5.0	90	5.5	
34035	35	- 6	630	5	6.5	9.3	68	48	
34036	60	6	1080	6	6.5	12.5	86	5.8	
34037	1 2	10	50	2	6.5	1.5	33	2,5	
34038	-	-	100	2.69	6.5	2.3	43	2,7	
34039	3.5	10		3.3	6.5	3,5	50	3.1	
34040	5	10	250	4	6.5	5.0	50	3.1	
34041	1	12	70	2 2 69	6.5	1.5	23	1.7	
34042	2	12	100	2192	6.5	2.3	30	1.9	
34043	3	12	145	3.3	6.5	3.5	42	26	
34044	3	12	215	4	6.5	5.0	43	2.6	

OFF-THE-SHELF

HIGH ENERGY DENSITY CAPACITORS

up to 8 joules/in.3 • up to 125 joules/lb.

For the highest energy density, compact, lightweight pulsed discharge capacitors . . . Maxwell's Series M is tops. Small size and high reliability make the Series M the perfect storage capacitor for medical defibrillators, pumping small lasers, flash-lamp excitation and airborne applications where energy per pound is critical. Peak currents up to 25 kA, inductance less than 0.1 µH, voltage reversal up to 80% are typical performance characteristics. Cylindrical windings provide a rugged, compact unit.

Call or write us today for FAST DELIVERY:

Maxwell Laboratories, Inc., 9244 Balboa Ave., San Diego, CA 92123. Tel: (714) 279-5100. Twx: 910-335-2036

Circle No. 54 on Reader Service Card

BROADBAND PHOTON COUNTING

When We Say PHOTON-BY-PHOTON, We Mean It! These RF Shielded housings provide multiple features for one low price. Model PR-1400 RF accepts 2" & 1½" dia. PMTs; PR-1401 RF houses 1½" dia. & smaller tubes. Both models are tested with broadband high-gain Photon Counting systems and provide: Electrostatic Shielding at cathode potential; Magnetic Shielding (0.040" thick high permeability Co-Netic AA material) extending ½ cathode dia. in front of photocathode; Photocathode concentricity maintained with opaque insulating ring; Removable Universal Front Mounting Flange (interchangeable with most PAR, PPI and GENCOM housings). Also — Model PR-1402 RF for Side-Window tubes. For Performance and Prices Call (617) 774-3250 or Write:

Products for Research, Inc.

78 Holten Street • Danvers, Mass. 01923 CABLE: PHOTOCOOL TELEX: 94-0287

Circle No. 55 on Reader Service Card

WINDOWS - PLATES - DISCS OPTICS

FUSED QUARTZ, OPTICAL GLASSES, PYREX

Ultra - low expansion materials, highly resistant to thermal shock.

High UV and IR transmission.

Chemically inert to most corrosive materials.

Stocking center for lenses, prisms and

laser accessories.

Complete fabricating facilities.

send for catalog of stock items

ESCO PRODUCTS

181 Oak Ridge Rd., Oak Ridge, N.J. 07438 (201)697-3700

Circle No. 56 on Reader Service Card

INSTITUTE FOR NUCLEAR PHYSICS RESEARCH

AMSTERDAM, THE NETHERLANDS

Applications are invited for the tenured position of experimental

SENIOR RESEARCH PHYSICIST

and possibly project leader in the field of pion/muon physics.

IKO is the intermediate energy physics section of the new Dutch national institute (NIKHEF) for nuclear and high energy physics. At the institute a 500 MeV high duty cycle linear electron accelerator (including a pion/muon facility) is presently under construction. Approximately 200 people work at IKO, of which about 50 are scientists. Apart from external collaborations, the pion/muon group will consist of about 10 IKO physicists.

Applicants for this position are expected to have substantial experience in the field of intermediate energy physics or in a closely related area. They should be well acquainted with the latest theoretical as well as instrumental developments in the field.

Further information can be obtained from dr. P. F. A. Goudsmit at the Institute (tel. 020-930951).

Applications, including curriculum vitae, possible references and a list of publications should be sent to the general scientific director of IKO, Prof. dr. A. H. Wapstra, P.O. Box 4395, Amsterdam 1006, the Netherlands.

BIC Current Integrators Since 1964

Model 1000-C*

- Highest accuracy
- Widest current span
- · Lowest input impedance
- · Internal offset & test supply
- Solid state (LED) readout
- · Automatic dead-time correction
- · Inputs of either polarity
- Ground isolated from case
- Remote control capability
- Pulse integration without external filters

Complete specs on request

BROOKHAVEN INSTRUMENTS CORP.Box 3136 • Austin, Texas 78764
(512) 442-1216

*Also available without internal counter as Model 1000-A

Circle No. 58 on Reader Service Card

QUEEN MARY COLLEGE

University of London

PHYSICS DEPARTMENT

Applications are invited for a LECTURESHIP tenable from 1 October, from those with interests in any of the following research fields: Theoretical Physics (elementary particle physics, quantum field theory, solid state theory and statistical mechanics); Solid state and polymer experimental physics; high energy nuclear physics; Far-infrared Astronomy (broad-band and heterodyne observations) as well as more general instrumental development in the same wavelength range. Salary scale £3174-£6446 p.a. plus £399 London Allowance. Please apply (enclosing curriculum vitae, list of publications and names and addresses of three referees) to The Registrar, (PT) Queen Mary College, Mile End Road, London E1 4NS, not later than 31 March.

obituaries

and five years on the staff of the Pacific Naval Laboratory of the Canadian Navy. In this last official service he became interested in geomagnetic micropulses, which he pursued at the University of British Columbia, Pacific Naval Laboratory, and Stanford University.

WRIGHT

Wright returned to McMurdo in the Antarctic in 1960 where he continued his research in micropulses at congugate points on the surface of the Earth. Through his contacts during and after the Second World War, Wright came to be known, respected and admired by many of his associates in US science.

William Henry Michener

William Henry Michener died last 10 August. He was 79 years old. A native of Ohio, he received his BA in physics from Amherst College in 1919. He served as instructor in physics at Lafayette College for one year and then continued his teaching at Carnegie Institute of Technology until 1949. During his early years there he worked on his MS and earned it from the University of Pittsburg in 1929. At Carnegie Institute of Technology Michener was active in the early efforts to convert to the MKS system. He authored several texts including Physics for Science and Engineering Students and the General Physics Laboratory Manual. Many portions of Michener's manual are still in use today. Michener moved to Allegeny College in 1949, and retired from teaching in 1961. Throughout his professional career Michener was active in the affairs of the Acoustical Society of America, the American Association of Physics Teachers, and the American Society for Engineering Education.