
Thermodynamics and
geometry
In the fulfillment of a goal envisioned by Gibbs, the laws
of thermodynamics have been written in the form of a Euclidian metric
geometry; its formulas can be read off from simple diagrams.

Frank Weinhold

It is perhaps appropriate that, in a year
marking the 100th anniversary of his
landmark paper in thermodynamics,
new developments should call fresh at-
tention to the special beauty and pro-
fundity of the work of J. Willard Gibbs.
Recent work1 has proved the possibility
of constructing a new representation of
equilibrium thermodynamics, one that
is couched in a mathematical language—
an intrinsically geometrical structure—
quite different from that generally em-
ployed.

This concept of the geometrization of
thermodynamics emerges rather direct-
ly from Gibbs's point of view, which is
summarized in the Box on the following
page. In the traditional textbook view-
point, which had originated with Sadi
Carnot and Lord Kelvin, these ideas are
recognizable only dimly at best. It is
remarkable that Gibbs arrived at a for-
mulation that lends itself so well to
transcription into an abstract "thermo-
dynamic geometry" at a time when the
required vector and matrix techniques
were not available. Let us therefore
begin this description of the newer de-
velopments by reviewing the thermody-
namic system of Gibbs.

Conjugate functions

The usefulness of a physical theory
depends—to an extent that is perhaps
insufficiently appreciated—on the
mathematical form in which it finds ex-
pression. It is therefore interesting to
touch on the close relationship in
Gibbs's 1876 paper between the physi-
cal insights attained and the initial
choice of mathematical formulation,
particularly as Gibbs himself laid great
stress on the proper choice of formal
machinery.

Gibbs chose to consider the internal
energy U as a function of the entropy S,
volume V, and the mass quantities
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(often expressed as mole numbers) Ni,
N2, . .. , Nc of the c independent chem-
ical components,

U = U(S, V, Nh N%..., Nc)

The temperature T and the pressure P
of the equilibrium state are obtained as
partial derivatives of U with respect to
changes in entropy and volume:

to write the Gibbs-Duhem equation2

SdT+ Vd(-P) + = 0

P ( )
\aV/s,Ni,...jic

These equations associate an intensive
variable Ri with each extensive argu-
ment X, of the internal energy function
U=U(X1,X2,...,Xc+2):

{ (4) ()
Because such relationships resemble
the equations of classical mechanics
that relate "conjugate" coordinates and
momenta (with the internal energy U
here taking the role of the Lagrangian
function), it is now common to describe
T as being (thermodynamically) conju-
gate to S, while —P is similarly the con-
jugate of V.

Such conjugacy relationships natural-
ly draw attention to the possible signifi-
cance of the partial derivatives of U
with respect to its remaining arguments
TV,. Gibbs denoted these quantities, re-
spectively conjugate to the mass quan-
tities Ni, as the "chemical potentials"

« = (—)

\ dNil
i+ u..Nc

By this simple stroke, Gibbs was able to
incorporate changes in the quantities of
the chemical components—including
the effects of chemical reactions—and
made possible a full-fledged chemical
thermodynamics.

The observed proportionality of U
and of each of its arguments to the total
extent of the system moreover allows us

; = 1

among variables T, P, m,. . ., ^c. Such
an equation is valid for any homoge-
neous system. When two or more ho-
mogeneous phases coexist in heteroge-
neous equilibrium (for example, an ice
cube in water at 0 deg C and atmo-
spheric pressure), each of their individ-
ual Gibbs-Duhem equations represents
an additional constraining relationship
among T, P and the K'S, thereby suc-
cessively reducing the number of de-
grees of freedom available to these vari-
ables. As if in an afterthought, Gibbs
pointed out the implication that a sys-
tem of c components and v distinct
phases could be left with no more than
c — v + 2 degrees of freedom. This is
the celebrated "Gibbs phase rule,"
which has so dominated analyses of het-
erogeneous equilibrium to this day.

A very interesting and characteristic
aspect of Gibbs's approach is its geo-
metrical and graphical flavor. Since
the derivative of a function bears a sim-
ple relationship to the slope of its
graph, the internal-energy function may
be graphically represented as a surface
in a multidimensional Cartesian coordi-
nate system with axes that are labelled
by the values of the extensive variables
U, S, V and the TV, 's. Because of equa-
tions 1, the tangents to this surface then
yield the values of T, P and the m's.

The capacity of such an "equilibrium
surface" to make clear at a glance the
solution of certain thermodynamic
problems that had seemed almost im-
possible to solve so provoked the admi-
ration of James Clerk Maxwell that he
sent Gibbs a plaster model of such a
surface, shown in figure 1.

Of course, Gibbs had been led initial-
ly3 to his fundamental equation

U= U(S,V,Nh...,Nc)

on the basis of its special graphical
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qualities, which allowed him to exercise
his unusual geometric abilities in the
solution of thermodynamic problems.
Gibbs appears to have had a strong in-
tuition for the underlying role of geom-
etry in thermodynamic theory; his gen-
eral approach in many ways anticipates
the trend towards the "geometrization
of science," which continues unabated
to this day.

Thermodynamic geometry

While Gibbs's skillful development of
the graphical properties of the equilib-
rium surfaces was of great importance—
especially in the two papers preceding
his great third paper—we may observe
that these surfaces are in a sense con-
trary to the spirit of his general ap-
proach, which is one of shifting atten-
tion away from overall processes to the
properties of individual equilibrium
states. An equilibrium surface, repre-
senting as it does the set of all such
states, would require for its construc-
tion a vastly greater volume of informa-
tion that would be necessary to describe
some one particular state. While
Gibbs's surfaces would, if available, cer-
tainly suffice to answer any thermody-
namic question, such surfaces may not
represent the useful thermodynamic re-
lationships characteristic of some spe-
cific equilibrium state in the most sim-
ple, economical and transparent way.

Moreover, it has long been realized
(initially by Gibbs himself) that the ge-
ometry of the Gibbsian surfaces lacks
an important element of that word in
its original sense: ytic = earth (area),
utrpia = measure, hence "area-mea-
sure." This element is what mathema-
ticians refer to as the "metric" proper-
ty. Simply put, distances, angles, areas
and other familiar notions of mensura-
tion do not have a clear-cut intrinsic
significance on such surfaces.

Consider, for example, three points
located close together on the Maxwell
surface, representing three distinct
equilibrium states of water, as shown in
figure 2. These points in general define
a triangle the edges, internal angles and
total area of which can be obtained by
the usual mensuration techniques.
Suppose now that another admirer of
Gibbs, having a dislike for Cartesian
coordinates, has prepared a different
model of the equilibrium surface, as
faithful to the thermodynamic proper-
ties of water as the first, but with its
axes inclined at angles other than 90°.
On this second surface the same three
equilibrium states would define a trian-
gle with edges, internal angles and total
area that are in general not equal to the
corresponding values obtained pre-
viously. Since by thermodynamic rea-
soning alone we can give no reason for
preferring one model over the other we
must conclude that such metric proper-
ties as lengths, angles and areas should

The viewpoint of J. Willard Gibbs

The year 1976, the bicentennial of the
United States, also marks, for thermody-
namicists the world over, the 100th anni-
versary of a scientific event of distinctly
American character. In May 1876, the
first portion of Josiah Willard Gibbs's mon-
umental memoir, "On the Equilibrium of
Heterogeneous Substances," completed
its appearance in the Transactions of the
Connecticut Academy of Arts and Scien-
cesab, the obscure journal of an impover-
ished state academy. The scientific and
technological impact of this remarkable
paper can even now be scarcely mea-
sured. The discipline of physical chemis-
try owes its origin to the appearance of
Gibbs's paper; so do various traditions in
physics, biology, metallurgy, geology, me-
chanical engineering and other disciplines
that are concerned, directly or indirectly,
with the thermal properties of matter.

It is curious that this, perhaps Ameri-
ca's single most important scientific
paper, was written while American
science was still in its infancy. Gibbs had
graduated from Yale University in 1863 as
only the second PhD in science (the first in
engineering) in the United States. He as-
sumed the newly created—but unpaid!—
professorship of mathematical physics at
Yale before his first scientific paper was
published. The New Haven townspeople
who contributed toward the printing costs
of the great manuscript could have had no
more inkling than did the scientific leaders
of Europe of the genius that was about to
reveal itself in that scientific outpost on
the American continent. Gibbs's life and
work is described in several major bio-
graphical studies.0

Thermodynamics before Gibbs still
carried much of its heritage as a child of
the steam engine and the machine age.
Through the first half of the 19th century,
as Gibbs has remarked/ "truth and error
were in a confusing state of mixture."
Gibbs dates the beginnings of a true
science of thermodynamics to the 1850
memoir of Rudolf Clausius, which with
"nice discrimination" sifted order out of
confusion and led for the first time to a

correct enunciation of the second law of
thermodynamics. Early forms of the sec-
ond law, including that of Clausius, were
set firmly in the Carnot tradition, but by
1865 Clausius had recognized that ther-
modynamic laws could be given a mathe-
matically more useful form when ex-
pressed in terms of a new concept, the
entropy. Unlike heat or work, the quantity
of entropy is a state property: a definite
attribute of an equilibrium system. It is
also, however, more abstract, lacking ob-
vious perceptual or intuitive significance.
Later work by Ludwig Boltzmann (who re-
garded Gibbs as the greatest synthetic phi-
losopher since Isaac Newton) was to clari-
fy the physical nature of entropy as a
measure of molecular randomness. But
Clausius had been able, in a manner spe-
cifically eulogized by Gibbs, to anticipate
the formal role of entropy before its pre-
cise physical nature could be known, and
thereby to bring the evolution of thermody-
namic ideas an important step forward.

Gibbs himself seized upon the entropy
concept, and set Clausius's succinct cou-
plet at the head of his own paper:

Die Energie der Welt ist constant.
Die Entropie der Welt strebt einem Max-
imum zu.

[The energy of the world is constant.
The entropy of the world tends toward a
maximum.]

From these terse statements of the laws
of thermodynamics, Gibbs embarks on a
masterful investigation of their conse-
quences along totally new lines. In the
abstract to his work, he begins8:

It is an inference naturally suggested by
the general increase of entropy which
accompanies the changes occurring in
any isolated material system that when
the entropy of the system has reached
a maximum, the system will be in a
state of equilibrium. Although this prin-
ciple has by no means escaped the at-
tention of physicists, its importance
does not appear to have been duly ap-

not be ascribed intrinsic thermodynam-
ic significance. What remains is an in-
stance of the more primitive pregeomet-
ry of connectivity, which is sometimes
referred to as "affine geometry" to dis-
tinguish it from the full "metric geome-
try" that is already known to second-
year high-school students.

Is there a metric?

The surfaces (more generally hyper-
surfaces, since they often occupy more
than two dimensions) of Gibbsian ther-
modynamics therefore represented a pi-
oneering intrusion of geometrical con-
cepts into physical theory, but lacked
the metric qualities that are character-
istic of more recent developments of
this kind. As examples, one thinks im-
mediately of the Riemann geometry

that underlies modern gravitation theo-
ry or the Hilbert space of modern quan-
tum theory, both of which have a fully
developed metric structure. In quan-
tum theory, for example, the probabili-
ty amplitudes representing the predict-
ed values of physical observables are
obtained as scalar products (requiring
lengths and separation angles) of ab-
stract vectors in Hilbert space, so that
one could hardly think of doing without
the metric character of that space.

If we ask the mathematician what
specific properties are required for
some set of "geometric" objects to ex-
hibit a metric structure, the reply is re-
markably simple4:

Suppose that we had somehow de-
fined a "distance" d,; between "points"
i and ;'. Then in any "triangle" of
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predated. Little has been done to de-
velop that principle as a foundation for
the general theory of thermodynamic
equilibrium.

The first sentence identifies the change of
perspective—so simple, but of such fe-
cundity—that is to open this new vista:
Gibbs chooses to examine not the pro-
cesses of thermodynamics (such as the
cycles of the Carnot tradition), but rather
the individual states of thermodynamic
equilibrium. The maximization of entropy
at constant energy (or, equivalents, the
minimization of energy at constant entro-
py) is then sufficient to furnish the analytic
characterization of the equilibrium state
from which its thermodynamic description
can be synthesized. There follows the
rich succession of results: chemical po-
tentials, phase rule, stability conditions,
free energies, characterization of critical
phases, equilibrium surfaces for heteroge-
neous substances and much more.

Although the approach chosen by
Gibbs, with its complete departure from
the language of Carnot cycles, was re-
garded as impenetrably complex by many
of his contemporaries, there is evidence
that Gibbs himself clearly perceived and
valued its essential simplicity. Some
years after the publication of his great
paper but well before others were to begin
developing the practical significance of
his innovations, Gibbs expressed a view-
point that was to recur in his studies on
pure mathematics and statistical mechan-
ics': "One of the principal objects of the-
oretical research in any department of
knowledge is to find the point of view from
which the subject appears in its greatest
simplicity." He justified his approach to
thermodynamics as one " . . . which
seems more simple, and which lends itself
more readily to the solution of problems,
than the usual method . . . Although my re-
sults were in a large measure such as had
previously been demonstrated by other
methods, yet, as I readily obtained those
which were to me before unknown, I was
confirmed in my belief in the suitableness
of the method adopted."

J. WILLARD GIBBS
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points that might be selected, it need
only be verified that no one side can ex-
ceed the sum of the other two sides;
that is, the "triangle inequality"

dij ^ dik + djk

must be satisfied for all such sets of
points.

The definition selected for di; might
be very abstract and might appear to
have nothing to do with "distance" in
any ordinary sense. Yet, the mathema-
tician assures us, if our choice has been
fortunate enough to satisfy the triangle
inequality, we are indeed entitled to
treat dij as a distance in the ordinary
Euclidean sense. The collection of
"points" with this property is mathe-
matically isomorphic to a Euclidean
space.

It might seem unwise to raise such
abstract notions in the context of ther-
modynamics, which is so deeply rooted
in empirical principles. As Constantin
Caratheodory once wrote,5 it is remark-
able to recognize that thermodynamics
" . . . could be erected on foundations
which were free of any hypothesis not
subject to experimental verification."
It is this empirical character that gives
purely thermodynamic conclusions
their great generality and rigor even in
circumstances in which specific physical
assumptions, such as those about the
interactions of molecular constituents
of the system, are liable to error. We
recall the words of Gibbs from a related
context6: "Here, there can be no mis-
take in regard to the agreement of the
hypotheses with the facts of nature, for

nothing is assumed in that respect.
The only error into which one can fall,
is the want of agreement between the
premises and the conclusions, and this,
with care, one may hope, in the main, to
avoid."

The second law gives a length

Fortunately it is possible to move fur-
ther along the path opened up by Gibbs
and uncover, strictly within the con-
fines of the empirical laws of thermody-
namics, a full-fledged metric geometry
of the abstract type described above.
The detailed treatment of this geometry
is of course carried out in mathematical
terms,1 but its main features can per-
haps be more readily appreciated in a
form that leaves off excessive technical
detail.
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To see how such a geometry might
arise, let us consider some particular
equilibrium state of a one-component
system with its thermodynamic vari-
ables grouped into the usual conjugate
pairs, (T, S) and (-P, V). We may
speak more generally of the ith pair,
(ft,, X{), as describing the ith mode of
the system (thermal mode, mechanical
mode, and soon).

Now we know from everyday experi-
ence that as the entropy S of a system
increases (for example, as heat is
added), the temperature T can not de-
crease, and similarly, when a system is
compressed in volume, the pressure it
exerts can not diminish. (It is sup-
posed in each case that the Xt variable
not specifically mentioned is held con-
stant during the change.) These obser-
vations are merely expressions of the
second law of thermodynamics, any ob-
servation contrary to which could
quickly be converted into some perpet-
ual-motion device to solve the world's
energy shortages! In general we should
say that the response of the equilibrium
system to any small increase in X, is to
increase (or at least never diminish) the
associated conjugate ft,; more concisely,
"the response of each ft; to its conjugate
Xi is positive.''' Whereas the magni-
tude of the response will vary from state
to state, its sign is fixed uniquely by the
second law for every state. Because
such intrinsic positivity is a characteris-
tic of Euclidean distances, we may be
encouraged somehow to think of the
"response in ft," as being related to the
"length" of some abstract vector 5?,- de-
scribing the ith mode.

These speculations can only be
pinned down by choosing some defini-
tion for the "length" | 7?,| of such a vec-
tor and then checking whether this defi-
nition is compatible with the triangle
inequality. The proper choice is to set
| Jti\2 equal to the responsiveness of the
ith mode, the partial derivative of ft,
with respect to its conjugate Xi with
the remaining Xj's held fixed,

Similarly, to find the "separation" d,y =
| fii - Jij\ of vectors 7?, and »„ we
must first find the variable that is con-
jugate to ft, — Rj (the answer is not
quite as simple as X, — XJt but is easily
found), then measure how the quantity
Ri — Rj adjusts when its conjugate vari-
able is altered slightly. By a series of
such measurements we accumulate a set
of purported "distances" d,-y which
characterize the equilibrium system.
Do these distances all conform to the
metric demands of the triangle inequal-
ity? Remarkably, they do.

That this must be so requires for its
proof precisely those properties of the
function U(S, V, Nh . . . , Nc) that were
inferred by Gibbs from the empirical

Model of the thermodynamic surface for water, presented to Gibbs by James Clerk Maxwell in
1875. It is now on permanent exhibit at the Gibbs Research Laboratory of Yale University.
Maxwell's own copy of the model is at the Cavendish Laboratory of Cambridge University.
Such equilibrium surfaces help clarify thermodynamic relationships. (Photo: Yale) Figure 1

laws of thermodynamics, or those that
are implicitly required to state the laws
in terms of such a function. (See the
Box on page 28.) The triangle inequali-
ty then serves as the condition that the
measured responses should be consis-
tent with the empirical laws of thermo-
dynamics in all respects. Seen in this
light, the laws of thermodynamics are
nothing more nor less than the mathe-
matical requirements for a metric ge-
ometry!

Questions and answers

Let us see what this means in more
concrete terms. Imagine that a geome-
ter and a thermodynamicist occupy
booths isolated from one another and
from the outside except for slots
through which written inquiries and
replies can be passed. A questioner
may request information from each
booth through a typewriter console that
simultaneously translates his questions
into the separate languages of the
geometer ("geometrical distances") and
thermodynamicist ("thermodynamic re-
sponses"); these questions are to be ac-
ceptable only if they can be answered in
some common language (such as pure
numbers) by each respondent.

The questioner will find that he can
in no way distinguish which booth holds
which scientist, for the replies of the
geometer are always in accordance with

the principles of thermodynamics, just
as those of the thermodynamicist are al-
ways in accordance with Euclid. If
each were given a particular object for
study—perhaps a molten alloy for the
thermodynamicist, and an irregular tet-
rahedron for the geometer—the objects
could be so chosen that requests for
measured properties will always be an-
swered by identical numerical replies
from the two booths. In a sense, both
scientists are studying the "same"
object. Thermodynamics is geometry!

While this surprising formal isomor-
phism promises little help to the geome-
ter, the same is by no means true for the
thermodynamicist. The geometer
would find little incentive to adopt the
formalism of equilibrium thermody-
namics to solve his mensuration prob-
lems, but the thermodynamicist may be
startled by the ease with which thorny
thermodynamic problems yield to the
geometer's tools. To exploit this ad-
vantage, he will naturally use vector al-
gebra in place of the partial differential
equations, chain rules and cross-differ-
entiation identities of the usual thermo-
dynamic formalism. He may be initial-
ly disquieted that the "laws of thermo-
dynamics" have somehow disappeared
(they remain only implicitly in the
mathematical structure being em-
ployed), but he will soon notice that his
deductions are always fully consistent
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with those laws so long as he "does ge-
ometry" according to the usual Euclide-
an rules.

Drawing the perpendiculars

Before illustrating these ideas, it may
be helpful to remark on the general
form in which certain familiar elements
of Gibbs's formalism reappear in this
abstract geometric picture. The ther-
modynamic vectors of the geometric
representation belong to some abstract
n -dimensional Euclidean space. This
means that in order to locate each point
of the space uniquely, it is necessary to
employ a coordinate system having n
independent axes. Any n independent
vectors J{\, 'R^ • • • , J?n (representing n
independent thermodynamic variables
Ri, R% • • • , Rn) might be chosen to con-
struct such a coordinate system, each
such vector pointing along one of the
proposed axes.

Unlike the familiar Cartesian axes,
however, the chosen vectors will not
generally be mutually perpendicular
unless some very special choice of ther-
modynamic variables has been made.
But if Jii (say) is not perpendicular to
3ii, ^3, • • • , Rn, we can always find the
unique direction that is perpendicular
to these other axes. We label a vector
along this direction as Jl\, and choose
its length so that the scalar product of
3i\ and 5?i (the product of their lengths
times the cosine of their separation
angle) is unity. By similar reasoning
we can find vectors Jt% ^3 , • • • , Jin,
where each ft; lies perpendicular to all
the vectors 3ij (except ft; itself), and
the lengths are chosen such that the
scalar product of Jli and 5?, is unity for
each i. Figure 3 illustrates this process
in three dimensions. It shows also that
this new set of vectors bears a close geo-
metrical relationship to the former set,
in the sense that if we had begun with
the vectors Jli, we should have been led
uniquely by the above procedure to the
original vectors Jii, and vice versa.

The new vectors must of course be as-
sociated with some corresponding ther-
modynamic variables Ri, and it is then
natural to ask how these new variables
are related to the initial i?,'s. It turns
out that Ri and i?, are conjugates in the
sense in which that term was used pre-
viously. Thus the conjugacy relation-
ship of the Gibbsian formalism reap-
pears as a kind of perpendicularity re-
quirement in the abstract geometry.
As in ordinary plane geometry, drawing
the perpendiculars often turns out to be
a useful device for analyzing the figures
that arise in a thermodynamic context.
Just as Gibbs was motivated to study
the chemical potential because it is con-
jugate to the mass of a chemical compo-
nent, a variable of interest, so one will
generally find it convenient to intro-
duce the conjugates Ri of whatever vari-
ables Ri have been chosen (out of con-

venience or necessity) to represent the
state of a system.

We might inquire how the dimen-
sionality n of the abstract thermody-
namic space is to be determined. A
moment's reflection will suggest that
this dimensionality must correspond to
the number of "degrees of freedom" in
the Gibbsian sense, and this indeed
turns out to be the case. The dimen-
sionality is therefore fixed by Gibbs's
phase rule, n = c — v + 2, and so de-
pends on the number of phases and of
independent chemical components
present in the system. The appearance
of a new phase (u —- v + 1), for example,
is associated with a collapse of the di-
mensionality (n —- n — 1) of the ab-
stract thermodynamic space, a process
with interesting ramifications, both
geometrically and thermodynamically.

Although I have not described their
form in Gibbs's formalism, I have men-
tioned certain "stability conditions"
that the second law enforces on the
measured values of thermodynamic
properties. In the geometric formalism
these conditions are merely the state-
ment that the cosine of any (thermody-
namic) angle must lie between plus and
minus one. Of course, Euclidean geom-
etry would never permit any statement
to the contrary, so the general consis-
tency of thermodynamic deductions
with these stability constraints is rather
easily attended to in the metric space.

It may also be helpful to remark
briefly on the general physical signifi-
cance of these abstract lengths and an-
gles: The length of <Rl is a measure of
the responsiveness of the system to
changes in the associated extensive pa-
rameter X,: the extent to which the

system adjusts its value of Ri in re-
sponse to a small change in X,. For ex-
ample, the length of the temperature
vector T depends, as well as on the tem-
perature T, on the reciprocal of the con-
stant-volume heat capacity of the sys-
tem, and that of the pressure vector P
depends on its inverse compressibility.
The angle 0,, between vectors ^?, and
Jij, on the other hand, measures the ex-
tent to which different responses are
coupled, that is, to what extent a small
change in the extensive variable X; of
the ith mode will produce a response Rj
in the jih mode and vice versa. The
angle between the temperature and
pressure vectors, for example, is related
to a thermal-expansion coefficient.

The metric parameters, unlike those
of a phase space, therefore have an in-
trinsic thermodynamic significance,
since they are uniquely associated with
measured physical properties of the
particular system under discussion.
The lengths of the thermodynamic vec-
tors depend on the physical units in
which the associated responses are mea-
sured, but the "coupling" angles 0,7 do
not.

An example

Let us now illustrate some of these
ideas more concretely with the simple
example of a one-component fluid, say a
sample of water. The system will be
discussed in terms of such standard ex-
perimental properties as the constant-
pressure and constant-volume heat ca-
pacities,

Cv-Tte)v
the constant-temperature and constant-

The thermodynamics-geometry connection

The key empirical observations that a for-
mal theory of equilibrium thermodyn-
amics must undertake to incorporate, and
draw inferences from, include:
• The first law Internal energy is a con-
served state function, satisfying the math-
ematical requirement for an exact differ-
ential,

dXj aX,

• The second law Internal energy is mini-
mized in the isolated equilibrium state,

lmplicit in these statements is the empiri-
cal observation that permits such "laws"
to be expressed in terms of U.
• The properties of an equilibrium sys-
tem may be associated with low-order de-
rivatives of a mathematical function U,
which involves only a small determinate
number of independent state properties
and is sufficiently "smooth" to permit the
application of the partial differential calcu-

lus in the usual manner.
On the other hand, a set of vectors 7?,

will obey the triangle inequality if their
scalar product (^?,j^>

/> always satisfies
the postulates

•

• \

• < J?J ytj + Wk) = (7i,\

These three postulates can be brought
into correspondence with the three empiri-
cal laws above by defining the thermody-
namic scalar product as

The correspondence will then be readily
appreciated in the first two cases and can
be made evident for the third by detailed
consideration of the distributive character
of the "chain rules" of the partial differen-
tial calculus.

For a complete discussion see refer-
ence 1 below.
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entropy compressibilities

V\dP/T-

and the thermal expansion coefficient,

The abstract space of any one-compo-
nent fluid has only two dimensions, so
the thermodynamic geometry of this
system can be represented in the plane
diagram of figure 4. This figure depicts
the temperature vector T and pressure
vector P together with their conjugates,
the entropy vector S" and volume vector
"V, respectively, with the lengths and
separation angles expressed in terms of
the standard properties defined above.
Note that in this case the perpendicu-
larity relationships that define the con-
jugate vectors simply mean that <£ is
perpendicular to P, and V to T.

An inspection of figure 4 readily re-
veals that the angles dgi and d-w must
satisfy

COS2 6gq- = COS2 8--py

which translates to the thermodynamic
identity

CPICV =

Similarly, the obvious relationship

sin2 6gr + cos2 dgq- = 1

becomes the thermodynamic identity

and other well known identities can im-
mediately be read off from the geome-
try of the figure by the appropriate
transformation relations. Moreover,
the impossibility of cooling a sample of
water held at constant volume so as to
produce an equivalent temperature in-
crease in a similar sample held at con-
stant pressure (corresponding to the
well known thermodynamic stability
condition, Cp > Cy) can be recognized
to follow from the geometric require-
ment, cos2 0,yr ^ 1, and so forth.

Other features

The geometric techniques enjoy a
general advantage that is not suggested
by the above simple example but be-
comes readily apparent in more com-
plex systems. This advantage stems
from the fact that the geometry of Eu-
clidean spaces can be developed in a
form that is essentially independent of
their dimensionality n. Because ther-
modynamic dimensionality and chemi-
cal complexity are related by Gibbs's
phase rule, the theorems and proce-
dures that can be developed from the
geometric formalism turn out to apply
with little or no modification to systems
of arbitrary chemical complexity—in
contrast to the procedures used in the
usual formalism, which are often quite
difficult to apply to systems of more
than a few components.

A triangle of equilibrium states on the thermodynamic surface of figure 1. When the Carte-
sian system of Maxwell's model (left) is replaced by a skewed coordinate system (right),
lengths, angles and area change: The surface lacks the "metric" property. Figure 2

How conjugate thermodynamic vectors are constructed is illustrated for a three-dimensional
system such as a binary alloy. The vectors Ji-,, Ji2, ^3 might represent responses to thermal,
mechanical and chemical disturbances; they form an irregular tetrahedron (a). The vector 5?3

conjugate to liz must be perpendicular to the plane of the other two vectors, as shown in b; its
length must be such that the scalar product of the conjugate vectors is unity. The three new
vectors form a conjugate tetrahedron, e, shown interpenetrating the original tetrahedron in f;
this suggests the complementary character of the construction. Figure 3
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Thermodynamic vectors for a simple fluid are represented in a two-dimensional diagram in
which lengths and angles are expressed in terms of such experimental properties as heat ca-
pacities; for example, cos dgy = aP[ TV/CP^T]1/2 and cos 8gT = [CV/CP]1/2. The thermody-
namically conjugate temperature and volume vectors, T and "V, are perpendicular; so are the
pressure vector P and the entropy vector cP. A number of thermodynamic relationships
among the experimental quantities can be read off directly from the diagram. Figure 4

A shortcoming of the abstract Euclid-
ean geometry outlined so far is that it
describes only the isolated equilibrium
state and thereby neglects more global
aspects of a thermodynamic descrip-
tion. These would be useful in treating
general changes of state: processes, cy-
cles and so on. To obtain this more
global perspective, we must regard the
abstract vectors of the local description
as functions of the state of the system.
These thermodynamic vectors then
stretch, shrink or rotate as we move
from point to point on a Gibbsian sur-
face, making the abstract Euclidean ge-
ometry itself a function of state.

This circumstance might appear to
complicate hopelessly a general geomet-
ric description, and to remove any sem-
blance of fundamental significance that
might have been claimed on its behalf.
A mathematician would, however, rec-
ognize in this situation a classic exam-
ple of a Riemann geometry, that form
of metric geometry that describes
"curved" spaces. At every point of a
Riemann space the geometry is locally
"flat" (Euclidean); this property has
previously been exploited in the de-
scription of individual equilibrium
states. Perhaps the study of more glo-
bal aspects of the abstract Riemann ge-
ometry can provide additional insights
into thermodynamic behavior, particu-
larly in the neighborhood of critical
points (states of incipient breakup into
distinct phases, where heat capacities
and other properties may appear to be-
come infinite) and other anomalies on
the Gibbs surface.

The abstract geometric theory may
be regarded as giving an interesting al-
ternative representation of the underly-
ing thermodynamic regularities which
Gibbs, in an analytic framework, had al-
ready comprehended in an essentially
complete fashion. The geometric and
analytic characterizations of an equilib-

rium state are complementary, in some-
what the same manner as Heisenberg
matrix mechanics and Schrodinger
wave mechanics form complementary
representations, in quite dissimilar
mathematical languages, of a single
underlying quantum theory.7

In thermodynamics, just as in quan-
tum mechanics, the interplay between
the dissimilar mathematical representa-
tions further illuminates the underlying
structure of the theory. We can like-
wise expect the new representation to
add to the arsenal of practical tech-
niques that can be brought to bear on
the analysis of the thermal properties of
matter. In this way we move one step
closer to " . . . the point of view from
which the subject appears in its greatest
simplicity."
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