perform a useful service to the physics community, it must have the confidence of both authors and readers that it is genuinely of high standard, and it must be commercially viable. The last is a question for the publishers, but we, as physicists, have reminded them that the physics community will not take kindly to a new journal that is superfluous. That reminder was, may we add, unnecessary, for Taylor and Francis have been in physics publishing for a long time, they have close contact with working scientists, and they have a substantial reputation to protect.

Our main reason for starting a new letter journal is the discontent with existing journals, which is widespread in Europe; we have also heard some complaints when we have been in the US. Incidentally, the high-energy and nuclear physicists seem, on the whole, to be quite satisfied, which is one of the reasons why we have excluded those subject areas from Communications on Physics.

At present many European physicists feel that if their important new work is to receive the attention it deserves, they must publish it in the large-circulation US journals. On the whole those journals are well-produced, but there are difficulties:

▶ Referees. Most of the refereeing is done within the US, so that Europeans and others feel that they are not part of the refereeing community.

Distance. When a quick telephone call would suffice to resolve a problem, distance is a severe obstacle.

▶ Page charges. These are difficult for a foreigner to pay, and although US journals are generous in waiving them, there is then often a publication delay, and also difficulties with reprints.

The limitations of the existing European letter journals are, in addition to their limited circulation and readership:

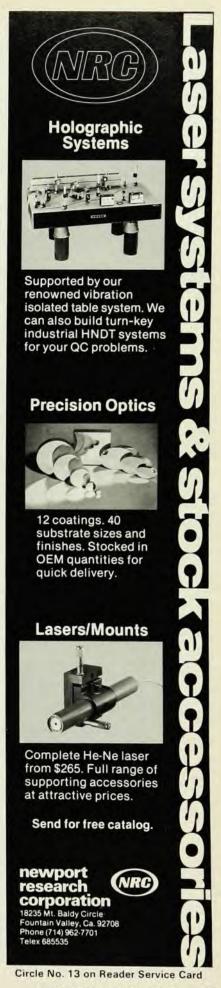
Many of the best of them are journals of national physical societies, and although they contain plenty of extranational papers, their editing and refereing is very much on a national basis.

No one letter journal has managed to combine the virtues of careful refereeing with rapid production.

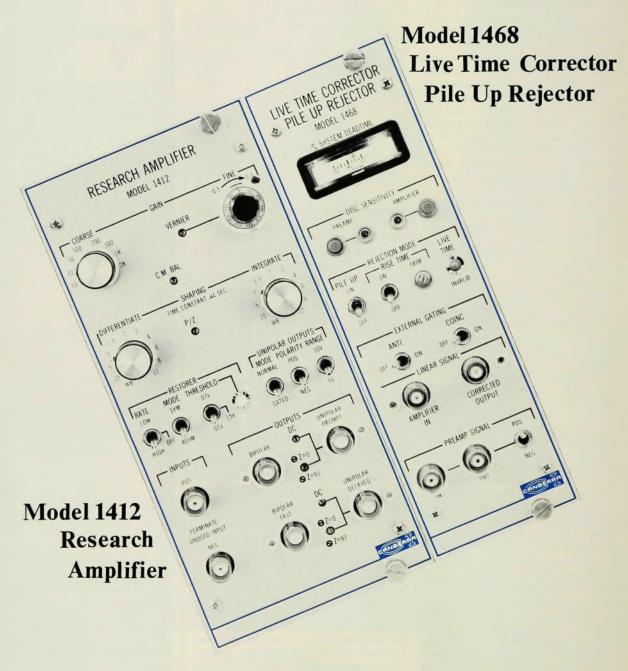
We believe that Communications on Physics can overcome these problems. From what we have already said you will have gathered that refereeing stands high on our list of priorities; and it is important that referees offer sound advice to both editors and authors. For example, the system operated for full-length papers by the (UK) Institute of Physics journals provides rapid reports that are informative and constructively critical; their scheme has enough safety checks to guard against eccentricities and foibles, wherever they may arise.

We hope that in our letter journal we can emulate them. Naturally, we want both the content and the readership to be fully international, and we believe that we can draw on the resources of the entire European physics community for the editorial production of Communications on Physics.

We expect that it will take time to establish the new journal, and we cannot ask libraries to subscribe to it unseen. For this reason, the publishers are distributing Communications on Physics free of charge for the first year. There is therefore no need for libraries to take any decision now; in a year's time, when the journal will go on subscription, we hope that physicists will feel that Communications on Physics is performing a useful service to the international physics community.


DAVID CAPLIN
DAVID SHERRINGTON
ROY JACOBS
Communications on Physics
Imperial College
London

COMMENT FROM AIP: The question of starting new journals is indeed a thorny one. Without commenting on the merits of the two new journals mentioned above, we would like to point out that another option sometimes exists in the case of a prospective new letters journal. That option is to create a special high-speed section within an existing journal, such as the Letters section in The Journal of Chemical Physics and The Journal of the Optical Society of America. A greater speed of publication can be achieved in this way by (a) requesting priority treatment for such material by the referees, and (b) dispensing with the requirement of sending out and waiting for the return of proof copies from the authors. The cost of additional pages in an existing journal is, of course, a small fraction of the cost of a separate new journal.


A. W. KENNETH METZNER Director, Publication Division, AIP

An urgent appeal

I appeal to you for a few moments of your time to assist a fellow physicist in the Soviet Union. As this letter is being written, Eitan Finkelshtein faces the ominous threat of a Soviet trial during which he will very likely be convicted and sent to a labor camp, unless help is quickly forthcoming. His crimes are that he has applied for an exit visa to emigrate to Israel, and that he is outspoken and active in attempts to live and express his Jewish identity. He is also accused of the crime of "parasitism," which many of us recognize as a Soviet excuse for criminal prosecution

The Perfect Pair for Ge(Li) Spectroscopy

CANBERRA INDUSTRIES, INC. / 45 Gracey Avenue / Meriden, Connecticut 06450 CANBERRA INSTRUMENTS LTD. / 223 Kings Road / Reading, Berkshire, England CANBERRA ELEKTRONIK GmbH / 8012 Ottobrunn / Putzbrunner Strasse 12 / Munich, Germany

of persons such as Eitan. His "state of parasitism" is a direct result of his dismissal from the Moscow Physics Technology Institute in 1967 when he openly spoke in favor of Israel. As a result he was subsequently denied any possibility of work ever since. Eitan and his wife Alexandra have been methodically harrassed by the authorities, but they are steadfast in their fight for permission to emigrate to Israel. The matter is now coming to a head. Eitan now faces either prosecution and committal to a labor camp or a slim hope of being released and allowed to emigrate.

Based on informed sources, a major factor in determining what action the Soviet authorities will actually take in such a situation depends on whether or not there is significant reaction and letters from people in the western world. Your action in a case such as this can literally make the difference between life and death.

For detailed information on where to write, please contact me at 32 Taylor Street, Dover, N.J. 07801. Hopefully, if enough of us help, our efforts will mean freedom and a new life for Eitan, Alexandra, and their 14-month old daughter, Miriam. Please don't let them down.

> MURRAY WEINSTEIN Dover, New Jersey

Detecting ether drift

Regarding H. C. Dudley's letter in February (page 73) it must be pointed out that Earth is not rigidly oriented with respect to the celestial sphere, whereas the 160-km/sec velocity vector of its average motion is rigidly oriented. It can then be noted that, if at any arbitrary time the velocity vector is normal to the surface (and therefore undetectable), one need only wait six hours for Earth's rotation to re-orient the surface so that the said vector now lies parallel to the surface and becomes easily measured. It is now only necessary to check to see if the experiment was performed at an appropriate time for this to have occurred.

A quick reading of the Michelson and Morley paper shows that, since they were intent upon measuring Earth's motion relative to the Sun, they took data both at 12:00 noon and at 6:00 pm, searching for the ether drift due to the 30 km/sec orbital velocity of Earth. The experiments contained in this paper were done in July of 1887, and a rather simple calculation shows that on 1 July at 12:00 noon the horizontal component of the Earth's motion relative to the 3 K radiation would be on the order of 150 km/sec, while at 6:00 the horigontal component would be negligible.

I find it hard to believe that an experiment intended to measure a drift difference of 30 km/sec would have failed to turn up the 150-km/sec velocity component which was actually there.

I conclude that any experiment, designed along these lines, to measure the ether drift can only result in the same failure experienced by Michelson and Morley. This is not to say flatly that such an ether does not exist, but only to conclude that if it does exist some much more sophisticated technique will need to be devised to measure it, not just an incorporation of more sophisticated equipment within the same experimental technique.

Reference

1. A. Michelson, E. W. Morley, "On the Relative Motion of the Earth and the Luminiferous Ether," The American Journal of Science, November 1887.

> DALE C. SCHEETZ Florida Atlantic University Boca Raton, Florida

Browsing at home

Messrs. Falk, Beiman, Erlbach and Lax can have a browsing library at City College rather than at AIP, as suggested in their letter in March (page 11).

There are at least three established book vendors who will supply on approval recently published books on any subject or subjects. These new books can be shelved in the library or departmental offices for examination. Titles not purchased are returned to the book vendor.

Several Energy and Research Development contractor librarians have used this book-selection method with success for the last five years.

JOHN P. BINNINGTON Brookhaven National Laboratory Upton, New York

Ozone work at Ford

Your article on "Fluorocarbons and the stratosphere" by Gloria B. Lubkin in the October issue (page 34) provides an interesting appraisal of the problem of ozone depletion and what is being done to better assess its impact. In this connection, we would like to point out the intensity of efforts currently underway in the research laboratories of Ford Motor Company, and some of our contributions to date.

Contrary to the impression that one gets through a casual reading of the article, the technique of laser-induced fluorescence1,2 as applied to the detection of OH was first demonstrated at Ford in 1972, and the detection of OH in the ambient air3 was first recorded in Ford's Scientific Research Laboratory

continued on page 90

LAKE SHORE CRYOTRONICS For all of your CRYOGENIC NEEDS!

Model DTC-500 Precision Cryogenic Temperature Indicator/Controller

- Control range continuous 1 to 400K. .001K control from 1 to 25K and .01 from 25 to 400K
- DT-500 Si or TG-100 Ga As diode sensor
- 10-3 to 10 watts heater output.
- Remote set point or programming capability
- True two mode control. (proportional & reset)
- Solid state construction and reliability.

Over the past several years, the Model DTC-500 has become the standard throughout the world for precise temperature control in all areas of low temperature research.

This instrument is truly a precision control instrument as evidenced by its unparalleled success in controlling extremely temperature sensitive diode lasers

The remote set point or programming capability allows one to automate his system for long experimental runs when it is necessary to vary the controlled temperature as either a step function or smooth function of some variable such as time

The reliability and durability of the DTC-500 has been proven by hundreds of applications and continuous usage over many years.

For details and literature write, call, or telex

9631E Sandrock Rd., Eden, N.Y. 14507 (716) 992-3411Telex 91-396CRYOTRON EDNE

Contact us direct, or our representatives

Southern New Jersey, Eastern Pennsylvania, Maryland, District of Columbia, Virginia, and Delaware

ler Griffin Company Darby Road Paoli Pennsylvania 19301 15) 644-7710

Ballimore Ask Operator for Enterprise 9.7710

Washington D C Ask Operator for Enterprise 1 7710

New England States

Bordewieck Engineering Sales Co. Inc. 427 Washington Street Norwell Massachusetts 02061 (617) 659-4915

Northern California

Quad Group 459 Trident Redwood City California 94065 (415) 592 5618

Southern California, Arizona Ouad Group 2030 Alameda Padre Serra Santa Barbara California 93101 (805) 965-1041

Circle No. 15 on Reader Service Card